【題目】如圖,公園里有一湖泊,其邊界由兩條線段
和以
為直徑的半圓弧
組成,其中
為2百米,
為
.若在半圓弧
,線段
,線段
上各建一個觀賞亭
,再修兩條棧道
,使
. 記
.
![]()
(1)試用
表示
的長;
(2)試確定點
的位置,使兩條棧道長度之和最大.
【答案】(1)
;(2)
與
重合.
【解析】分析:(1)解直角三角形BDC用
表示
的長.(2)先利用正弦定理求出DF=4cosθsin(
+θ), 再求出DE=AF=4-4
,再利用三角函數求DE+DF的最大值.
詳解:(1)連結DC.
在△ABC中,AC為2百米,AC⊥BC,∠A為
,
所以∠CBA=
,AB=4,BC=
.
因為BC為直徑,所以∠BDC=
,
所以BD=BC cosθ=
cosθ.
(2)在△BDF中,∠DBF=θ+
,∠BFD=
,BD=
cosθ,
所以
,
所以DF=4cosθsin(
+θ),
且BF=4
,所以DE=AF=4-4
,
所以DE+DF=4-4
+4
sin(
+θ)=
sin2θθ+3
=2 sin(2θ-
)+3.
因為
≤θ<
,所以
≤2θ-
<
,
所以當2θ-
=
,即θ=
時,DE+DF有最大值5,此時E與C重合.
答:當E與C重合時,兩條棧道長度之和最大.
科目:高中數學 來源: 題型:
【題目】
購買某種保險,每個投保人每年度向保險公司交納保費
元,若投保人在購買保險的一年度內出險,則可以獲得10 000元的賠償金.假定在一年度內有10 000人購買了這種保險,且各投保人是否出險相互獨立.已知保險公司在一年度內至少支付賠償金10 000元的概率為
。
(Ⅰ)求一投保人在一年度內出險的概率
;
(Ⅱ)設保險公司開辦該項險種業務除賠償金外的成本為50 000元,為保證盈利的期望不小于0,求每位投保人應交納的最低保費(單位:元)。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年春節期間,某服裝超市舉辦了一次有獎促銷活動,消費每超過600元(含600元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種.
方案一:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,一次性摸出3個球,其中獎規則為:若摸到3個紅球,享受免單優惠;若摸出2個紅球則打6折,若摸出1個紅球,則打7折;若沒摸出紅球,則不打折.
方案二:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.
(1)若兩個顧客均分別消費了600元,且均選擇抽獎方案一,試求兩位顧客均享受免單優惠的概率;
(2)若某顧客消費恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎方案更合算?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
+
=1(a>b>0)上的點P到左,右兩焦點F1,F2的距離之和為2
,離心率為
.
(1)求橢圓的標準方程;
(2)過右焦點F2的直線l交橢圓于A,B兩點,若y軸上一點M(0,
)滿足|MA|=|MB|,求直線l的斜率k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著我國互聯網信息技術的發展,網絡購物已經成為許多人消費的一種重要方式,某市為了了解本市市民的網絡購物情況,特委托一家網絡公示進行了網絡問卷調查,并從參與調查的10000名網民中隨機抽取了200人進行抽樣分析,得到了下表所示數據:
經常進行網絡購物 | 偶爾或從不進行網絡購物 | 合計 | |
男性 | 50 | 50 | 100 |
女性 | 60 | 40 | 100 |
合計 | 110 | 90 | 200 |
(1)依據上述數據,能否在犯錯誤的概率不超過
的前提下認為該市市民進行網絡購物的情況與性別有關?
(2)現從所抽取的女性網民中利用分層抽樣的方法再抽取
人,從這
人中隨機選出
人贈送網絡優惠券,求出選出的
人中至少有兩人是經常進行網絡購物的概率;
(3)將頻率視為概率,從該市所有的參與調查的網民中隨機抽取
人贈送禮物,記經常進行網絡購物的人數為
,求
的期望和方差.
附:
,其中![]()
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com