【題目】在平面直角坐標系
中,拋物線
的焦點為
,點
是拋物線
上一點,且
.
(1)求
的值;
(2)若
為拋物線
上異于
的兩點,且
.記點
到直線
的距離分別為
,求
的值.
【答案】(1)
;(2)
.
【解析】分析:(1)利用拋物線的定義求p的值.(2)先求出a的值,再聯立直線的方程和拋物線的方程得到韋達定理,再求
|(y1+2) (y2+2)|的值.
詳解:(1)因為點A(1,a) (a>0)是拋物線C上一點,且AF=2,
所以
+1=2,所以p=2.
(2)由(1)得拋物線方程為y2=4x.
因為點A(1,a) (a>0)是拋物線C上一點,所以a=2.
設直線AM方程為x-1=m (y-2) (m≠0),M(x1,y1),N(x2,y2).
由
消去x,得y2-4m y+8m-4=0,
即(y-2)( y-4m+2)=0,所以y1=4m-2.
因為AM⊥AN,所以-
代m,得y2=-
-2,
所以d1d2=|(y1+2) (y2+2)|=|4m×(-
)|=16.
科目:高中數學 來源: 題型:
【題目】渦陽縣某華為手機專賣店對市民進行華為手機認可度的調查,在已購買華為手機的
名市民中,隨機抽取
名,按年齡(單位:歲)進行統計的頻數分布表和頻率分布直方圖如圖:
分組(歲) | 頻數 |
|
|
|
|
|
|
|
|
|
|
合計 |
|
(1)求頻數分布表中
、
的值,并補全頻率分布直方圖;
(2)在抽取的這
名市民中,從年齡在
、
內的市民中用分層抽樣的方法抽取
人參加華為手機宣傳活動,現從這
人中隨機選取
人各贈送一部華為手機,求這
人中恰有
人的年齡在
內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了了解當下高二男生的身高狀況,某地區對高二年級男生的身高(單位:
)進行了抽樣調查,得到的頻率分布直方圖如圖所示.已知身高在
之間的男生人數比身高在
之間的人數少1人.
![]()
(1)若身高在
以內的定義為身高正常,而該地區共有高二男生18000人,則該地區高二男生中身高正常的大約有多少人?
(2)從所抽取的樣本中身高在
和
的男生中隨機再選出2人調查其平時體育鍛煉習慣對身高的影響,則所選出的2人中至少有一人身高大于185
的概率是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個幾何體的三視圖如圖所示,該幾何體從上到下由四個簡單幾何體組成,其體積分別記為V1 , V2 , V3 , V4 , 上面兩個簡單幾何體均為旋轉體,下面兩個簡單幾何體均為多面體,則有( ) ![]()
A.V1<V2<V4<V3
B.V1<V3<V2<V4
C.V2<V1<V3<V4
D.V2<V3<V1<V4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某餐廳通過查閱了最近5次食品交易會參會人數
(萬人)與餐廳所用原材料數量
(袋),得到如下統計表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
參會人數 | 13 | 9 | 8 | 10 | 12 |
原材料 | 32 | 23 | 18 | 24 | 28 |
(1)根據所給5組數據,求出
關于
的線性回歸方程
.
(2)已知購買原材料的費用
(元)與數量
(袋)的關系為
,
投入使用的每袋原材料相應的銷售收入為700元,多余的原材料只能無償返還,據悉本次交易大會大約有15萬人參加,根據(1)中求出的線性回歸方程,預測餐廳應購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤
銷售收入
原材料費用).
參考公式:
,
.
參考數據:
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓C1與C2的中心在坐標原點O,長軸均為MN且在x軸上,短軸長分別為2m,2n(m>n),過原點且不與x軸重合的直線l與C1 , C2的四個交點按縱坐標從大到小依次為A,B,C,D,記
,△BDM和△ABN的面積分別為S1和S2 . ![]()
(1)當直線l與y軸重合時,若S1=λS2 , 求λ的值;
(2)當λ變化時,是否存在與坐標軸不重合的直線l,使得S1=λS2?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分別是AC,AB上的點,
,O為BC的中點.將△ADE沿DE折起,得到如圖2所示的四棱椎A′﹣BCDE,其中A′O=
. ![]()
(1)證明:A′O⊥平面BCDE;
(2)求二面角A′﹣CD﹣B的平面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某醫學院讀書協會欲研究晝夜溫差大小與患感冒人數多少之間的關系,該協會分別到氣象局與某醫院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數,得到如圖所示的頻率分布直方圖.該協會確定的研究方案是:先從這六組數據中選取2組,用剩下的4組數據求線性回歸方程,再用被選取的2組數據進行檢驗.
![]()
(Ⅰ)已知選取的是1月至6月的兩組數據,請根據2至5月份的數據,求出就診人數
關于晝夜溫差
的線性回歸方程;
(Ⅱ)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問(Ⅰ)中該協會所得線性回歸方程是否理想?
參考公式:回歸直線的方程
,
其中
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com