【題目】已知
是函數(shù)f(x)=msinωx﹣cosωx(m>0)的一條對(duì)稱軸,且f(x)的最小正周期為π
(Ⅰ)求m值和f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)角A,B,C為△ABC的三個(gè)內(nèi)角,對(duì)應(yīng)邊分別為a,b,c,若f(B)=2,
,求
的取值范圍.
【答案】(Ⅰ)解:函數(shù)f(x)=msinωx﹣cosωx(m>0) 化簡(jiǎn)可得:f(x)=
sin(ωx+θ),其中tanθ=﹣
.
∵f(x)的最小正周期為π,即T=π=
,
∴ω=2.
又∵
是其中一條對(duì)稱軸,
∴2×
+θ=k
,k∈Z.
可得:θ=
,
則tan(kπ﹣
)=﹣
.
m>0,
當(dāng)k=0時(shí),tan
= ![]()
∴m=
.
可是f(x)的解析式為f(x)=2sin(2x﹣
),
令
2x﹣
,k∈Z,
得:
≤x≤
,
所以f(x)的單調(diào)遞增區(qū)間為[
,
],k∈Z.
(Ⅱ)由f(B)=2sin(2B﹣
)=2,
可得2B﹣
=
,k∈Z,
∵0<B<π,
∴B= ![]()
由正弦定理
得:
=2sinA﹣sin(A+
)=
sinA﹣
cosA=
sin(A﹣
)
∵0 ![]()
∴A﹣
∈(
,
)
∴
的取值范圍是(
,
)
【解析】(Ⅰ)利用輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,再根據(jù)f(x)的最小正周期為π,求出ω,
是其中一條對(duì)稱軸,求出m的值,可得f(x)的解析式,將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的增區(qū)間上,解不等式得函數(shù)的單調(diào)遞增區(qū)間.(Ⅱ)根據(jù)f(B)=2,求出角B的大小,利用正弦定理,
轉(zhuǎn)化為三角函數(shù)問(wèn)題解決即可.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+(lga+2)x+lgb滿足f(﹣1)=﹣2且對(duì)于任意x∈R,恒有f(x)≥2x成立.
(1)求實(shí)數(shù)a,b的值;
(2)解不等式f(x)<x+5.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查甲、乙兩種品牌商品的市場(chǎng)認(rèn)可度,在某購(gòu)物網(wǎng)點(diǎn)隨機(jī)選取了14天,統(tǒng)計(jì)在某確定時(shí)間段的銷量,得如下所示的統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖求:
(1)甲、乙兩種品牌商品銷量的中位數(shù)分別是多少?
(2)甲品牌商品銷量在[20,50]間的頻率是多少?
(3)甲、乙兩個(gè)品牌商品哪個(gè)更受歡迎?并說(shuō)明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中心在原點(diǎn)的橢圓C1與雙曲線C2具有相同的焦點(diǎn),F(xiàn)1(﹣c,0),F(xiàn)2(c,0),P為C1與C2在第一象限的交點(diǎn),|PF1|=|F1F2|且|PF2|=5,若橢圓C1的離心率
,則雙曲線的離心率e2的范圍是( )
A.![]()
B.![]()
C.(2,3)
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
,
為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)
在圓外,過(guò)點(diǎn)
作圓
的切線,設(shè)切點(diǎn)為
.
(1)若點(diǎn)
運(yùn)動(dòng)到
處,求此時(shí)切線
的方程;
(2)求滿足
的點(diǎn)
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線
的焦點(diǎn)是橢圓
的頂點(diǎn),
為橢圓
的左焦點(diǎn)且橢圓
經(jīng)過(guò)點(diǎn)
.
(1)求橢圓
的方程;
(2)過(guò)橢圓
的右頂點(diǎn)
作斜率為
的直線交橢圓
于另一點(diǎn)
,連結(jié)
并延長(zhǎng)
交橢圓
于點(diǎn)
,當(dāng)
的面積取得最大值時(shí),求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在拋物線y=x2與直線y=2圍成的封閉圖形內(nèi)任取一點(diǎn)A,O為坐標(biāo)原點(diǎn),則直線OA被該封閉圖形解得的線段長(zhǎng)小于
的概率是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線l經(jīng)過(guò)兩直線l1:2x-y+4=0與l2:x-y+5=0的交點(diǎn),且與直線x-2y-6=0垂直.
(1)求直線l的方程.
(2)若點(diǎn)P(a,1)到直線l的距離為
,求實(shí)數(shù)a的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com