【題目】新冠狀病毒嚴(yán)重威脅著人們的身體健康,我國某醫(yī)療機(jī)構(gòu)為了調(diào)查新冠狀病毒對我國公民的感染程度,選了某小區(qū)的
位居民調(diào)查結(jié)果統(tǒng)計如下:
感染 | 不感染 | 合計 | |
年齡不大于 |
| ||
年齡大于 |
| ||
合計 |
|
|
(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)能否在犯錯誤的概率不超過
的前提下認(rèn)為感染新冠狀病與不同年齡有關(guān)?
(3)已知在被調(diào)查的年齡大于
歲的感染者中有
名女性,其中
位是女教師,現(xiàn)從這
名女性中隨機(jī)抽取
人,求至多有
位教師的概率.
附:
,
.
|
|
|
|
|
|
|
|
|
|
【答案】(1)見解析;(2)能在犯錯誤的概率不超過
的前提下認(rèn)為感染新冠狀病與不同年齡有關(guān);(3)
.
【解析】
(1)根據(jù)所選居民總?cè)藬?shù)為
可完善
列聯(lián)表;
(2)計算出
的觀測值,結(jié)合臨界值表可得出結(jié)論;
(3)計算出所有的基本事件數(shù),并求出事件“所抽取的
人中至多有
名教師”所包含的基本事件數(shù),利用古典概型的概率公式可求得所求事件的概率.
(1)由于所選居民總?cè)藬?shù)為
,
列聯(lián)表如下表所示:
感染 | 不感染 | 合計 | |
年齡不大于 |
|
|
|
年齡大于 |
|
|
|
合計 |
|
|
|
(2)
,
所以能在犯錯誤的概率不超過
的前提下認(rèn)為感染新冠狀病與不同年齡有關(guān);
(3)從
人任意抽
人的所有等可能事件共
個,
其中至多
位教師有
個基本事件,所以所求概率是
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的中心在坐標(biāo)原點,焦點在
軸上,且橢圓
的一個頂點與拋物線
的焦點重合,離心率為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)過橢圓
的右焦點
且斜率存在的直線
交橢圓
于
兩點,線段
的垂直平分線交
軸于
點,證明:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蛇養(yǎng)殖基地因國家實施精準(zhǔn)扶貧,大力扶持農(nóng)業(yè)產(chǎn)業(yè)發(fā)展,擬擴(kuò)大養(yǎng)殖規(guī)模.現(xiàn)對該養(yǎng)殖基地已經(jīng)售出的王錦蛇的體長(單位:厘米)進(jìn)行了統(tǒng)計,得到體長的頻數(shù)分布表如下:
體長(厘米) |
|
|
|
|
|
|
頻數(shù) | 40 | 50 | 110 | 160 | 120 | 20 |
(1)將王錦蛇的體長在各組的頻率視為概率,趙先生欲從此基地隨機(jī)購買3條王錦蛇,求至少有2條體長不少于200厘米的概率.
(2)為了拓展銷售市場,該養(yǎng)殖基地決定購買王錦蛇與烏梢蛇兩類成年母蛇用于繁殖幼蛇,這兩類蛇各200條的相關(guān)信息如下表.
繁殖年限(年) | 3 | 4 | 5 | 6 |
王錦蛇(條) | 20 | 60 | 80 | 40 |
烏梢蛇(條) | 30 | 80 | 70 | 20 |
若王錦蛇、烏梢蛇成年母蛇的購買成本分別為650元/條、600元/條,每條母蛇平均可為養(yǎng)殖場獲得1200元/年的銷售額,且每條蛇的繁殖年限均為整數(shù),將每條蛇的繁殖年限的頻率看作概率,以每條蛇所獲得的毛利潤(毛利潤=總銷售額-購買成本)的期望值作為購買蛇類的依據(jù),試問:應(yīng)購買哪類蛇?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若對任意
,函數(shù)
的圖像不在
軸上方,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
(Ⅰ)當(dāng)
時,求曲線
在點
處的切線方程;
(Ⅱ)當(dāng)
時,若
在區(qū)間
上的最小值為-2,其中
是自然對數(shù)的底數(shù),求實數(shù)
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形,一個數(shù)學(xué)意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng),分形幾何學(xué)不僅讓人們感悟到科學(xué)與藝術(shù)的融合,數(shù)學(xué)與藝術(shù)審美的統(tǒng)一,而且還有其深刻的科學(xué)方法論意義,如圖,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于一種分形,具體作法是取一個實心三角形,沿三角形的三邊中點連線.將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復(fù)上述過程逐次得到各個圖形,若記圖①三角形的面積為
,則第n個圖中陰影部分的面積為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用分期付款的方式購買某家用電器一件,價格為1 150元,購買當(dāng)天先付150元,以后每月這一天還款一次,每次還款數(shù)額相同,20個月還清,月利率為1%,按復(fù)利計算.若交付150元后的第一個月開始算分期付款的第一個月,全部欠款付清后,請問買這件家電實際付款多少元?每月還款多少元?(最后結(jié)果保留4個有效數(shù)字)
參考數(shù)據(jù):(1+1%)19=1.208,(1+1%)20=1.220,(1+1%)21=1.232.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com