【題目】某食品店為了了解氣溫對銷售量的影響,隨機記錄了該店1月份中5天的日銷售量
(單位:千克)與該地當日最低氣溫
(單位:
)的數據,如下表:
| 2 | 5 | 8 | 9 | 11 |
| 12 | 10 | 8 | 8 | 7 |
(1)求出
與
的回歸方程
;
(2)判斷
與
之間是正相關還是負相關;若該地1月份某天的最低氣溫為6
,請用所求回歸方程預測該店當日的營業額.
附: 回歸方程
中,
,![]()
科目:高中數學 來源: 題型:
【題目】商家生產一種產品,需要先進行市場調研,計劃對北京、上海、廣州三地進行市場調研,待調研結束后決定生產的產品數量,下列四種方案中最可取的是( )
A. ![]()
B. ![]()
C. ![]()
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=
,下列結論中錯誤的是
A.
, f(
)=0
B. 函數y=f(x)的圖像是中心對稱圖形
C. 若
是f(x)的極小值點,則f(x)在區間(-∞,
)單調遞減
D. 若
是f(x)的極值點,則
(
)=0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=log3(x2+2x﹣8)的定義域為A,函數g(x)=x2+(m+1)x+m.
(1)若m=﹣4時,g(x)≤0的解集為B,求A∩B;
(2)若存在
使得不等式g(x)≤﹣1成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知過點
的直線
的參數方程是
(
為參數).以平面直角坐標系的原點為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程式為
.
(Ⅰ)求直線
的普通方程和曲線
的直角坐標方程;
(Ⅱ)若直線
與曲線
交于兩點
,且
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={a1 , a2 , …,am}.若集合A1∪A2∪A3∪…∪An=A,則稱A1 , A2 , A3 , …,An為集合A的一種拆分,所有拆分的個數記為f(n,m).
(1)求f(2,1),f(2,2),f(3,2)的值;
(2)求f(n,2)(n≥2,n∈N*)關于n的表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設△ABC的內角A,B,C的對邊分別為a,b,c,若c=2
,sinB=2sinA.
(1)若C=
,求a,b的值;
(2)若cosC=
,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《九章算術》中的更相減損法的思路與圖相似.執行該程序框圖,若輸入的a,b分別為14,18,則輸出的a=( ) ![]()
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二孩放開”政策的熱度,現在某市進行調查,隨機調查了50人,他們年齡的頻數分布及支持“生育二孩”人數如下表:
年齡 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65] |
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生育二孩放開“政策 | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上統計數據填下面2×2列聯表,并判斷是否有99%的把握認為以45歲為分界點對“生育二孩放開”政策的支持度有差異;
年齡不低于45歲的人數 | 年齡低于45歲的人數 | 合計 | |
支持 | a= | c= | |
不支持 | b= | d= | |
合計 |
(2)若對年齡在[5,15)的被調查人中隨機選取兩人進行調查,恰好這兩人都支持“生育二孩放開"政策的概率是多少?
| 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
附:
. [導學號113750266]
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com