【題目】如圖:在直角梯形
中
,
,
,
,
于
,把
沿
折到
的位置,使
.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求平面
與平面
的所夾的銳二面角的大小.
【答案】(1)見解析(2)![]()
【解析】試題分析:(1)由
,進(jìn)而證得
平面
,得到
,
在
中,由勾股定理,得到
,利用直線與平面垂直的判定定理,作出證明;
(2)取
,
,
分別為
,
,
軸,建立空間直角坐標(biāo)系,由題意知面
的法向量
,求出平面
的一個法向量
,利用空間的夾角公式,即可求解二面角的大小.
試題解析:
(1)
,
,
,
平面![]()
又
平面
,
.
在
中,
,
,
![]()
,又
.∴
平面
.又
平面
,
.
又因在直角梯形
中
,
,
, ![]()
所以
為正方形,![]()
![]()
平面
(2)取
,
,
分別為
,
,
軸,建立如圖空間直角坐標(biāo)系,由題意知面
的法向量
,設(shè)平面
的法向量
,
, ![]()
則
![]()
.
平面
與平面
的所夾的銳二面角為
.
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
中,
,數(shù)列
滿足
.
(1)求證:數(shù)列
是等差數(shù)列,寫出
的通項(xiàng)公式;
(2)求數(shù)列
的通項(xiàng)公式及數(shù)列
中的最大項(xiàng)與最小項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
的左焦點(diǎn)F為圓
的圓心,且橢圓C上的點(diǎn)到點(diǎn)F的距離最小值為
。
(I)求橢圓C的方程;
(II)已知經(jīng)過點(diǎn)F的動直線
與橢圓C交于不同的兩點(diǎn)A、B,點(diǎn)M坐標(biāo)為(
),證明:
為定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動直線l:(m+3)x-(m+2)y+m=0與圓C:(x-3)2+(y-4)2=9.
(1)求證:無論m為何值,直線l與圓C總相交.
(2)求直線l被圓C所截得的弦長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解學(xué)生的體能情況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測試,所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖所示),圖中從左到右各小長方形面積之比為
,第二小組頻數(shù)為
.
![]()
(1)學(xué)生跳繩次數(shù)的中位數(shù)落在哪個小組內(nèi)?
(2)第二小組的頻率是多少?樣本容量是多少?
(3)若次數(shù)在
以上(含
次)為良好,試估計該學(xué)校全體高一學(xué)生的良好率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,點(diǎn)
,直線
,設(shè)圓
的半徑為1且關(guān)于直線l對稱.
(1)若圓心
在直線
上,過點(diǎn)
作圓
的切線,求切線的方程;
(2)點(diǎn)
關(guān)于點(diǎn)
的對稱點(diǎn)為B,若圓
上存在點(diǎn)
,使
,求圓心
的橫坐標(biāo)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是各項(xiàng)為正數(shù)的等比數(shù)列,且a2=9,a4=81.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若bn=log3an , 求證:數(shù)列{bn}是等差數(shù)列.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com