【題目】已知集合A=
.
(1)求A∩B;
(2)若f(x)=log2x﹣
,x∈A∩B求函數(shù)f(x)的最大值.
【答案】
(1)解:∵1<2x≤16,∴20<2x≤24,即0<x≤4,
∴A={x|0<x≤4},
∵x∈(0,4],∴
.
∴A∩B=(0,2]
(2)解:f(x)=log2x﹣
的導(dǎo)數(shù)為f′(x)=
+
,
f′(x)在(0,2]大于0,可得f(x)在(0,2]遞增,
f(2)取得最大值log22﹣
=1﹣
= ![]()
【解析】(1)運用指數(shù)函數(shù)單調(diào)性化簡集合A,由冪函數(shù)單調(diào)性求得B,再由交集定義可得;(2)求得f(x)的導(dǎo)數(shù),判斷單調(diào)性,即可得到f(2)為最大值.
【考點精析】解答此題的關(guān)鍵在于理解集合的交集運算的相關(guān)知識,掌握交集的性質(zhì):(1)A∩B
A,A∩B
B,A∩A=A,A∩
=
,A∩B=B∩A;(2)若A∩B=A,則A
B,反之也成立,以及對函數(shù)的最值及其幾何意義的理解,了解利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值;利用圖象求函數(shù)的最大(小)值;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=|x﹣1|+m|x﹣2|+6|x﹣3|在x=2時取得最小值,則實數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}的公差d≠0滿足
成等比數(shù)列,若
=1,Sn是{
}的前n項和,則
的最小值為________.
【答案】4
【解析】
成等比數(shù)列,
=1,可得:
=
,即(1+2d)2=1+12d,d≠0,解得d.可得an,Sn.代入
利用分離常數(shù)法化簡后,利用基本不等式求出式子的最小值.
∵
成等比數(shù)列,a1=1,
∴
=
,
∴(1+2d)2=1+12d,d≠0,
解得d=2.
∴an=1+2(n﹣1)=2n﹣1.
Sn=n+
×2=n2.
∴
=
=n+1+
﹣2≥2
﹣2=4,
當且僅當n+1=
時取等號,此時n=2,且
取到最小值4,
故答案為:4.
【點睛】
本題考查了等差數(shù)列的通項公式、前n項和公式,等比中項的性質(zhì),基本不等式求最值,在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應(yīng)用,否則會出現(xiàn)錯誤.
【題型】填空題
【結(jié)束】
17
【題目】設(shè)
是公比為正數(shù)的等比數(shù)列,
,![]()
(1)求
的通項公式;
(2)設(shè)
是首項為1,公差為2的等差數(shù)列,求數(shù)列
的前
項和![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】教育部記錄了某省2008到2017年十年間每年自主招生錄取的人數(shù)
為方便計算,2008年編號為1,2009年編號為2,
,2017年編號為10,以此類推
數(shù)據(jù)如下:
年份編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
人數(shù) | 3 | 5 | 8 | 11 | 13 | 14 | 17 | 22 | 30 | 31 |
Ⅰ
根據(jù)前5年的數(shù)據(jù),利用最小二乘法求出y關(guān)于x的回歸方程
,并計算第8年的估計值和實際值之間的差的絕對值;
Ⅱ
根據(jù)
Ⅰ
所得到的回歸方程預(yù)測2018年該省自主招生錄取的人數(shù).
其中
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的廣告費用支出
與銷售額
之間有如下的對應(yīng)數(shù)據(jù):
| 2 | 4 | 5 | 6 | 8 |
| 30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖;并說明銷售額y與廣告費用支出x之間是正相關(guān)還是負相關(guān)?
(2)請根據(jù)上表提供的數(shù)據(jù),求回歸直線方程
;
(3)據(jù)此估計廣告費用為10時,銷售收入
的值.
(參考公式:
,).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量
,
,
滿足:|
|=|
|=1,
=﹣
,<
﹣
,
﹣
>=60°,則|
|的最大值為( )
A.2
B.![]()
C.![]()
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差不為0的等差數(shù)列{an}中,a1=2,且a2+1,a4+1,a8+1成等比數(shù)列.
(1)求數(shù)列{an}通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=
,求適合方程b1b2+b2b3+…+bnbn+1=
的正整數(shù)n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知cosα=
,cos(α+β)=﹣
,且α,β∈(0,
),則cos(α﹣β)的值等于( )
A.﹣ ![]()
B.![]()
C.﹣ ![]()
D.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com