【題目】在某單位的職工食堂中,食堂每天以
元/個的價格從面包店購進面包,然后以
元/個的價格出售.如果當天賣不完,剩下的面包以
元/個的價格賣給飼料加工廠.根據以往統計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進了90個面包,以
(單位:個,
)表示面包的需求量,
(單位:元)表示利潤.
![]()
(Ⅰ)求
關于
的函數解析式;
(Ⅱ)根據直方圖估計利潤
不少于
元的概率;
(III)在直方圖的需求量分組中,以各組的區間中點值代表該組的各個值,并以需求量落入該區間的頻率作為需求量取該區間中間值的概率(例如:若需求量
,則取
,且
的概率等于需求量落入
的頻率),求
的分布列和數學期望.
科目:高中數學 來源: 題型:
【題目】已知集合A={x|x2﹣6x+8<0},B={x|(x﹣a)(x﹣3a)<0}.
(1)若a=1,求A∩B;
(2)若A∩B=,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某農科所對冬季晝夜溫差大小與某反季節大豆新品種發芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發芽數,得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發芽數 | 23 | 25 | 30 | 26 | 16 |
該農科所確定的研究方案是:先從這五組數據中選取2組,用剩下的3組數據求線性回歸方程,再對被選取的2組數據進行檢驗.
(1)求選取的2組數據恰好是不相鄰2天數據的概率;
(2)若選取的是12月1日與12月5日的兩組數據,請根據12月2日至12月4日的數據,求出y關于x的線性回歸方程
;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=
﹣a是奇函數
(1)求實數a的值;
(2)判斷函數在R上的單調性并用函數單調性的定義證明;
(3)對任意的實數x,不等式f(x)<m﹣1恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=log2(4x)log2(2x)的定義域為
. (Ⅰ)若t=log2x,求t的取值范圍;
(Ⅱ)求y=f(x)的最大值與最小值,并求取得最值時對應的x的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業為了對生產的一種新產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到以下數據:
單價x(元/件) | 60 | 62 | 64 | 66 | 68 | 70 |
銷量y(件) | 91 | 84 | 81 | 75 | 70 | 67 |
(I)畫出散點圖,并求
關于
的回歸方程;
(II)已知該產品的成本是36元/件,預計在今后的銷售中,銷量與單價仍然服從(I)中的關系,為使企業獲得最大利潤,該產品的單價應定為多少元(精確到元)?
附:回歸直線
的斜率和截距的最小二乘法估計公式分別為:
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數,并將數據整理如下:
![]()
(1)若采用樣本估計總體的方式,試估計小王的所有微信好友中每日走路步數超過5000步的概率;
(2)已知某人一天的走路步數超過8000步被系統評定“積極型”,否則為“懈怠型”,根據題意完成下面的
列聯表,并據此判斷能否有95%以上的把握認為“評定類型”與“性別”有關?
附:
,
| 0.10 | 0.05 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在
軸上,離心率為
,且經過點
,直線
:
交橢圓于
,
兩不同的點.
(1)求橢圓的方程;
(2)若直線
不過點
,求證:直線
,
與
軸圍成等腰三角形.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com