(本題滿分14分)
如圖所示,在正三棱柱ABC -A1B1C1中,底面邊長和側(cè)棱長都是2,D是側(cè)棱CC1上任意一點,E是A1B1的中點。![]()
(I)求證:A1B1//平面ABD;
(II)求證:AB⊥CE;
(III)求三棱錐C-ABE的體積。
科目:高中數(shù)學 來源: 題型:解答題
如圖,直四棱柱
中,底面
是直角梯形,
,
,
.![]()
(1)求證:
是二面角
的平面角;
(2)在
上是否存一點
,使得
與平面
與平面
都平行?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA1平面ABCD,∠ABC=60°,E,F(xiàn)分別是BC,PC的中點.
(1)證明:AE⊥PD‘
(2)若H為PD上的動點,EH與平面PAD所成最大角的正切值為
求二面角E-AF-C的余弦值![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題13分)在幾何體ABCDE中,∠BAC=
,DC⊥平面ABC,EB⊥平面ABC,F(xiàn)是BC的中點,AB=AC=BE=2,CD=1.
(1)求證:DC∥平面ABE;
(2)求證:AF⊥平面BCDE;
(3)求幾何體ABCDE的體積.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在矩形ABCD中,AB=4,AD=2,E為AB的中點,現(xiàn)將△ADE沿直線DE翻折成△
,使平面
⊥平面BCDE,F(xiàn)為線段
的中點. ks5u
(Ⅰ)求證:EF∥平面
;
(Ⅱ)求直線
與平面
所成角的正切值. ![]()
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知四棱錐的底面是矩形,側(cè)棱長相等,棱錐的高為4,其俯視圖如圖所示.
(1)作出此四棱錐的主視圖和側(cè)視圖,并在圖中標出相關(guān)的數(shù)據(jù);
(2)求該四棱錐的側(cè)面積
.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)請你設(shè)計一個包裝盒,如下
圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得A、B、C、D四個點重合于圖中的點P,正好形成一個正四棱挪狀的包裝盒E、F在AB上,是被切去的一等腰直角三角形斜邊的兩個端點.設(shè)AE= FB=x(
cm).![]()
(I)某廣告商要求包裝盒的側(cè)面積S(cm2)
最大,試問x應取何值?
(II)某廠商要求包裝盒的容積V(cm3)最大,試問x應取何值?并求出此時包裝盒的高與底面邊長的比值.[
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com