【題目】已知橢圓C:![]()
的焦距為
,短半軸的長為2,過點P(-2,1)且斜率為1的直線l與橢圓C交于A,B兩點.
(1)求橢圓C的方程;
(2)求弦AB的長.
科目:高中數學 來源: 題型:
【題目】如圖所示:在五面體ABCDEF中,四邊形EDCF是正方形,AD=DE=1,∠ADE=90°,∠ADC=∠DCB=120°.
![]()
(Ⅰ)求證:平面ABCD⊥平面EDCF;
(Ⅱ)求三棱錐A-BDF的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點F,直線y=4與y軸的交點為P,與拋物線C的交點為Q,且|QF|=2|PQ|.
(1)求p的值;
(2)已知點T(t,-2)為C上一點,M,N是C上異于點T的兩點,且滿足直線TM和直線TN的斜率之和為
,證明直線MN恒過定點,并求出定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系
中,以
為極點,
軸為正半軸為極軸建立極坐標系.已知曲線
的極坐標方程為
,直線
與曲線
相交于
兩點,直線
過定點
且傾斜角為
交曲線
于
兩點.
(1)把曲線
化成直角坐標方程,并求
的值;
(2)若
成等比數列,求直線
的傾斜角
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C1:
y2=1的左右頂點是雙曲線C2:
的頂點,且橢圓C1的上頂點到雙曲線C2的漸近線的距離為
.
(1)求雙曲線C2的方程;
(2)若直線與C1相交于M1,M2兩點,與C2相交于Q1,Q2兩點,且![]()
5,求|M1M2|的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
九章算術
給出求羨除體積的“術”是:“并三廣,以深乘之,又以袤乘之,六而一”,其中的“廣”指羨除的三條平行側棱的長,“深”指一條側棱到另兩條側棱所在平面的距離,“袤”指這兩條側棱所在平行線之間的距離,用現代語言描述:在羨除
中,
,
,
,
,兩條平行線
與
間的距離為h,直線
到平面
的距離為
,則該羨除的體積為
已知某羨除的三視圖如圖所示,則該羨除的體積為
![]()
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,設點
,
,
(其中
表示a、b中的較大數)為
、
兩點的“切比雪夫距離”.
(1)若
,Q為直線
上動點,求P、Q兩點“切比雪夫距離”的最小值;
(2)定點
,動點
滿足![]()
,請求出P點所在的曲線所圍成圖形的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形
是菱形,
是矩形,平面
平面
,
,
,
,
為
的中點.
![]()
(1)求證:
∥平面
;
(2)在線段
上是否存在點
,使二面角
的大小為
?若存在,求出
的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com