已知在四棱錐
中,底面
是邊長為2的正方形,側(cè)棱
平面
,且
,
為底面對(duì)角線的交點(diǎn),
分別為棱
的中點(diǎn)![]()
(1)求證:
//平面
;
(2)求證:
平面
;
(3)求點(diǎn)
到平面
的距離。
(1)利用中位線性質(zhì)定理可知
,那么結(jié)合線面平行的判定定理的到。
(2)根據(jù)
面![]()
,又可知
,結(jié)合線面垂直的判定定理得到。
(3)![]()
解析試題分析:(1)證明:
是正方形,,
為
的中點(diǎn),又
為
的中點(diǎn),
,且
平面
,
平面
,
平面
.
(2)證明:
面
,
面
,
,又可知
,而
,
面
,
面
,
面
,
,又
,
為
的中點(diǎn),
,而
,
平面
,
平面
(3)解:設(shè)點(diǎn)
到平面
的距離為
,由(2)易證
,
,
,
,![]()
![]()
又
,即
,
,得![]()
即點(diǎn)
到平面
的距離為![]()
考點(diǎn):平行和垂直的證明,以及距離的求解
點(diǎn)評(píng):主要是考查了空間中線面的平行,以及線面垂直的判定定理的運(yùn)用,以及運(yùn)用等體積法求解距離,屬于中檔題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直角梯形
中,
,
∥
,
,
為線段
的中點(diǎn),將
沿
折起,使平面
⊥平面
,得到幾何體
.![]()
(1)若
,
分別為線段
,
的中點(diǎn),求證:
∥平面
;
(2)求證:
⊥平面
;
(3)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O為底面中心, A1O⊥平面ABCD,
. ![]()
(Ⅰ) 證明: A1C⊥平面BB1D1D;
(Ⅱ) 求平面OCB1與平面BB1D1D的夾角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐ABCD-PGFE中,底面ABCD是直角梯形,側(cè)棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.![]()
(Ⅰ)求PD與BC所成角的大。
(Ⅱ)求證:BC⊥平面PAC;
(Ⅲ)求二面角A-PC-D的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,圓錐頂點(diǎn)為
.底面圓心為
,其母線與底面所成的角為
.
和
是底面圓
上的兩條平行的弦,軸
與平面
所成的角為
, ![]()
(Ⅰ)證明:平面
與平面
的交線平行于底面;
(Ⅱ)求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖平面SAC⊥平面ACB,ΔSAC是邊長為4的等邊三角形,ΔACB為直角三角形,∠ACB=90°,BC=
,求二面角S-AB-C的余弦值。![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,四棱錐
中,
底面
,面
是直角梯形,
為側(cè)棱
上一點(diǎn).該四棱錐的俯視圖和側(cè)(左)視圖如圖2所示.
(1)證明:
平面
;
(2)線段
上是否存在點(diǎn)
,使
與
所成角的余弦值為
?若存在,找到所有符合要求的點(diǎn)
,并求
的長;若不存在,說明理由.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com