【題目】已知函數f(x)=
(x∈R)
(1)用定義證明f(x)是增函數;
(2)若g(x)=f(x)﹣a是奇函數,求g(x)在(﹣∞,a]上的取值集合.
科目:高中數學 來源: 題型:
【題目】△ABC的內角A、B、C的對邊分別為a、b、c.己知c=
asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面積為
,求b,c.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C的焦點在x軸上,離心率等于
,且過點(1,
). (Ⅰ)求橢圓C的標準方程;
(Ⅱ)過橢圓C的右焦點F作直線l交橢圓C于A,B兩點,交y軸于M點,若
=λ1
,
=λ2
,求證:λ1+λ2為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2+2x﹣2﹣a(a≤0),
(1)若a=﹣1,求函數的零點;
(2)若函數在區間(0,1]上恰有一個零點,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,邊長為an的一組正三角形AnBn﹣1Bn的底邊Bn﹣1Bn依次排列在x軸上(B0與坐標原點重合).設{an}是首項為a,公差為2的等差數列,若所有正三角形頂點An在第一象限,且均落在拋物線y2=2px(p>0)上,則a的值為 . ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中點. ![]()
(1)求證:CE∥平面PAD;
(2)若二面角P﹣AC﹣E的余弦值為
,求直線PA與平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】雙流中學校運動會招募了12名男志愿者和18名女志愿者,將這30名志愿者的身高編成如圖所示的莖葉圖(單位:
),身高在175
以上(包括175
)定義為“高個子”,身高在175
以 下(不包括175
)定義為“非高個子”.
![]()
(1)如果用分層抽樣的方法從“高個子”和“非高個子”中共抽取5人,再從這5人中選2人,求至少有一人是“高個子”的概率?
(2)若從身高180
以上(包括180
)的志愿者中選出男、女各一人,求這兩人身高相差5
以上的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=
+log2x.
(1)求f(2),f(
),f(4),f(
)的值,并計算f(2)+f(
),f(4)+f(
);
(2)求f(1)+f(2)+f(3)+…+f(2016)+f(
)+f(
)+…f(
)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|2x﹣1|+|2x+a|,g(x)=x+3. (Ⅰ)當a=﹣2時,求不等式f(x)<g(x)的解集;
(Ⅱ)設a>﹣1,且當
時,f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com