| 1 | ||
an-
|
| 1 | ||
an-
|
| 1 |
| bn |
| 1 |
| 2 |
| 4 |
| 3 |
| 4 |
| 3 |
| 1 |
| bn |
| 1 |
| 2 |
| 1 | ||
an-
|
| 1 |
| bn |
| 1 |
| 2 |
| 1 |
| bn+1 |
| 1 |
| 2 |
| 1 |
| bn |
| 1 |
| 2 |
| 1 |
| bn+1 |
| 1 |
| 2 |
| 1 |
| bn |
| 1 |
| 2 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 1 | ||
a1-
|
| 4 |
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
| 2n |
| 3 |
| 2n |
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
| 22 |
| 3 |
| 4 |
| 3 |
| 8 |
| 3 |
| 23 |
| 3 |
| 4 |
| 3 |
| 24 |
| 3 |
| 4 |
| 3 |
| 20 |
| 3 |
| 2n |
| 3 |
| 4 |
| 3 |
| 1 |
| bn |
| 1 |
| 2 |
| 3 |
| 2n+4 |
| 1 |
| 2 |
| 3 |
| 2n+4 |
| 1 |
| 2 |
| 2n |
| 3 |
| 4 |
| 3 |
| 2n-1+2 |
| 3 |
| 5 |
| 3 |
| 2n-1 |
| 3 |
| 5 |
| 3 |
| 1 |
| 3 |
| 5 |
| 3 |
| 2 |
| 3 |
| 5 |
| 3 |
| 2n-1 |
| 3 |
| 5 |
| 3 |
| ||
| 1-2 |
| 5 |
| 3 |
| 2n-1 |
| 3 |
科目:高中數(shù)學 來源: 題型:
| 3 |
| 2 |
| a | 2 n |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a2012 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(理)數(shù)列{an}滿足
,
,且a1a2+a2a3+…+anan+1=na1an+1對于任何正整數(shù)n都成立,則
的值為 ( )
A.5050 B.5048 C.5044 D.5032
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(1)證明:an>2;
(2)證明:a1+a2+…+an<2(n+a-2);
(3)若xn=
,求數(shù)列{xn}的通項公式
(文)已知數(shù)列{an}和{bn}滿足:a1=
,且an+bn=1,bn+1=
(n∈N*).
(1)求數(shù)列{an}與{bn}的通項公式;
(2)設Sn=a1+a2+a2a3+…+anan+1.若對任意的n∈N*,不等式kSn>bn恒成立,求正整數(shù)k的最小值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com