【題目】大城市往往人口密集,城市綠化在健康人民群眾肺方面發(fā)揮著非常重要的作用,歷史留給我們城市里的大山擁有品種繁多的綠色植物更是無(wú)價(jià)之寶.改革開(kāi)放以來(lái),有的地方領(lǐng)導(dǎo)片面追求政績(jī),對(duì)森林資源野蠻開(kāi)發(fā)受到嚴(yán)肅查處事件時(shí)有發(fā)生.2019年的春節(jié)后,廣西某市林業(yè)管理部門在“綠水青山就是金山銀山”理論的不斷指引下,積極從外地引進(jìn)甲、乙兩種樹(shù)苗,并對(duì)甲、乙兩種樹(shù)苗各抽測(cè)了10株樹(shù)苗的高度(單位:厘米),數(shù)據(jù)如下面的莖葉圖:
![]()
(1)據(jù)莖葉圖求甲、乙兩種樹(shù)苗的平均高度;
(2)據(jù)莖葉圖,運(yùn)用統(tǒng)計(jì)學(xué)知識(shí)分析比較甲、乙兩種樹(shù)苗高度整齊情況.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若
在
處的切線方程為
,求
的值;
(2)若
為區(qū)間
上的任意實(shí)數(shù),且對(duì)任意
,總有
成立,求實(shí)數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)的環(huán)保社團(tuán)參照國(guó)家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級(jí)對(duì)應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會(huì)超過(guò)300):
空氣質(zhì)量指數(shù) |
|
|
|
|
|
|
空氣質(zhì)量等級(jí) | 1級(jí)優(yōu) | 2級(jí)良 | 3級(jí)輕度污染 | 4級(jí)中度污染 | 5級(jí)重度污染 | 6級(jí)嚴(yán)重污染 |
該社團(tuán)將該校區(qū)在2018年11月中10天的空氣質(zhì)量指數(shù)監(jiān)測(cè)數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計(jì)為概率.
![]()
(1)以這10天的空氣質(zhì)量指數(shù)監(jiān)測(cè)數(shù)據(jù)作為估計(jì)2018年11月的空氣質(zhì)量情況,則2018年11月中有多少天的空氣質(zhì)量達(dá)到優(yōu)良?
(2)從這10天的空氣質(zhì)量指數(shù)監(jiān)測(cè)數(shù)據(jù)中,隨機(jī)抽取三天,求恰好有一天空氣質(zhì)量良的概率;
(3)從這10天的數(shù)據(jù)中任取三天數(shù)據(jù),記
表示抽取空氣質(zhì)量良的天數(shù),求
的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是( )
A.若
,則
,
的長(zhǎng)度相等,方向相同或相反
B.若向量
是向量
的相反向量,則![]()
C.空間向量的減法滿足結(jié)合律
D.在四邊形
中,一定有![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)
是拋物線
上的動(dòng)點(diǎn),
是
的準(zhǔn)線上的動(dòng)點(diǎn),直線
過(guò)
且與
(
為坐標(biāo)原點(diǎn))垂直,則點(diǎn)
到
的距離的最小值的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
,直線
經(jīng)過(guò)橢圓
的左焦點(diǎn).
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若直線
與
軸交于點(diǎn)
,
、
是橢圓
上的兩個(gè)動(dòng)點(diǎn),且它們?cè)?/span>
軸的兩側(cè),
的平分線在
軸上,
|,則直線
是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極坐標(biāo)建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
求
的普通方程;
將圓
平移,使其圓心為
,設(shè)
是圓
上的動(dòng)點(diǎn),點(diǎn)
與
關(guān)于原點(diǎn)
對(duì)稱,線段
的垂直平分線與
相交于點(diǎn)
,求
的軌跡的參數(shù)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若各項(xiàng)均不為零的數(shù)列
的前
項(xiàng)和為
,數(shù)列
的前
項(xiàng)和為
,且
,
.
(1)證明數(shù)列
是等比數(shù)列,并求
的通項(xiàng)公式;
(2)設(shè)
,是否存在正整數(shù)
,使得
對(duì)于
恒成立.若存在,求出正整數(shù)
的最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(-4,2)是Rt△
的直角頂點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)B在x軸上.
(1)求直線AB的方程;
(2)求△OAB的外接圓的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com