【題目】如圖所示,正三角形ABC所在平面與梯形BCDE所在平面垂直,
,
=4 ,
,F為棱AE的中點.
![]()
(1)求證:平面
平面
;
(2)若直線
與平面
所成角為
,求二面角
的余弦值.
【答案】(1)見解析,;(2)![]()
【解析】(1)如圖,取
中點
,連接
、
,因為
為
中點,所以
,又
,
,
所以
,所以四邊形
為平行四邊形,所以
.又
為正三角形,所以
,從而
, (2分)
由
,
,可得
,由平面ABC
平面BCDE,平面ABC
平面BCDE=BC,
可得
平面ABC,因為
平面ABC,所以
,
因為
,所以
平面
,
又
平面
,所以平面
平面
.(5分)
(2)因為
,
,所以
,又
,
,
所以
平面
,所以
平面
,
所以
為
與平面
所成的角,即
,從而
.(7分)
以
為原點,建立如圖所示的空間直角坐標(biāo)系
,
![]()
則
,
,
,
,
,
所以
,
.(8分)
設(shè)平面
的法向量為
,則
,即
,解得
.
令
,得
.
由(1)可知
平面
,所以
為平面
的一個法向量.
所以
.
因為二面角
為鈍角,所以其余弦值為
.(12分)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的離心率為
,且過點
.
![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知橢圓的左焦點為
,直線
與橢圓
交于不同兩點
,
(
都在
軸上方),且
.
(ⅰ)若點
的橫坐標(biāo)為1,求
的面積;
(ⅱ)直線
是否恒過定點?若過定點,求出該定點的坐標(biāo);若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
已知直線l經(jīng)過點
,傾斜角
,圓
的極坐標(biāo)方程為
.
(Ⅰ)寫出直線l的參數(shù)方程,并把圓
的方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)l與圓
相交于
兩點,求點
到
兩點的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行節(jié)日促銷活動,消費滿一定數(shù)額即可獲得一次抽獎機(jī)會,抽獎這可以從以下兩種方式中任選一種進(jìn)行抽獎.
抽獎方式①:讓抽獎?wù)唠S意轉(zhuǎn)動如圖所示的圓盤,圓盤停止后指針指向陰影部分(圖中四個陰影部分均為扇形,且每個扇形圓心角均為
,邊界忽略不計)即中獎.
抽獎方式②:讓抽獎?wù)邚难b有3個白球和3個紅球的盒子中一次性摸出2個球(球除顏色外不加區(qū)分),如果摸到的是2個紅球,即中獎.
假如你是抽獎?wù)撸瑸榱俗屩歇劦目赡苄源螅銘?yīng)該選擇哪一種抽獎方式?并說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第十二屆全國人民代表大會第五次會議和政協(xié)第十二屆全國委員會第五次會議(簡稱兩會)將分別于2017年3月5日和3月3日在北京開幕.全國兩會召開前夕,某網(wǎng)站推出兩會熱點大型調(diào)查,調(diào)查數(shù)據(jù)表明,民生問題是百姓最為關(guān)心的熱點,參與調(diào)查者中關(guān)注此問題的約占
.現(xiàn)從參與者中隨機(jī)選出200人,并將這200人按年齡分組:第
組
,第
組
,第
組
,第
組
,第
組
,得到的頻率分布直方圖如圖所示:
![]()
(1)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取12人,再從這12人中隨機(jī)抽取3人贈送禮品,求抽取的3人中至少有
人年齡在第3組的概率;
(2)若從所有參與調(diào)查的人(人數(shù)很多)中任意選出3人,記關(guān)注民生問題的人數(shù)為X,求X的分布列與期望;
(3)把年齡在第1,2,3組的居民稱為青少年組,年齡在第4,5組的居民稱為中老年組,若選出的200人中不關(guān)注民生問題的人中老年人有10人,問是否有
的把握認(rèn)為是否關(guān)注民生問題與年齡有關(guān)?
附:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時,
,若存在x∈[t2﹣1,t],使不等式f(2x+t)≥2f(x)成立,則實數(shù)t的取值范圍是. .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若函數(shù)y=f(x)在某一區(qū)間D上任取兩個實數(shù)x1、x2 , 且x1≠x2 , 都有
,則稱函數(shù)y=f(x)在區(qū)間D上具有性質(zhì)L.
(1)寫出一個在其定義域上具有性質(zhì)L的對數(shù)函數(shù)(不要求證明).
(2)對于函數(shù)
,判斷其在區(qū)間(0,+∞)上是否具有性質(zhì)L?并用所給定義證明你的結(jié)論.
(3)若函數(shù)
在區(qū)間(0,1)上具有性質(zhì)L,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),在以原點為極點,
軸正半軸為極軸的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(1)求
的普通方程和
的傾斜角;
(2)設(shè)點
,
和
交于
兩點,求
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com