已知
.
①若函數f(x)的值域為R,求實數m的取值范圍;
②若函數f(x)在區間(-∞,1-
)上是增函數,求實數m的取值范圍.
科目:高中數學 來源: 題型:解答題
已知函數
的圖像在點
處的切線方程為
.
(Ⅰ)求實數
的值;
(Ⅱ)求函數
在區間
上的最大值;
(Ⅲ)若曲線
上存在兩點
使得
是以坐標原點
為直角頂點的直角三角形,且斜邊
的中點在
軸上,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)某沿海地區養殖的一種特色海鮮上市時間僅能持續5個月,預測上市初期和后期會因供應不足使價格呈持續上漲態勢,而中期又將出現供大于求,使價格連續下跌.現有三種價格模擬函數:①
;②
;③
.(以上三式中
均為常數,且
)
(1)為準確研究其價格走勢,應選哪種價格模擬函數(不必說明理由)
(2)若
,
,求出所選函數
的解析式(注:函數定義域是
.其中
表示8月1日,
表示9月1日,…,以此類推);
(3)在(2)的條件下研究下面課題:為保證養殖戶的經濟效益,當地政府計劃在價格下跌期間積極拓寬外銷,請你預測該海鮮將在哪幾個月份內價格下跌.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知二次函數
與兩坐標軸分別交于不同的三點A、B、C.
(1)求實數t的取值范圍;
(2)當
時,求經過A、B、C三點的圓F的方程;
(3)過原點作兩條相互垂直的直線分別交圓F于M、N、P、Q四點,求四邊形
的面積的最大值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某工廠某種產品的年固定成本為250萬元,每生產
千件,需另投入成本為
,當年產量不足80千件時,
(萬元).當年產量不小于80千件時,
(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產的商品能全部售完.
(Ⅰ)寫出年利潤
(萬元)關于年產量
(千件)的函數解析式;
(Ⅱ)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知二次函數f(x)滿足條件f(0)=1和f(x+1)-f(x)=2x.
(1)求f(x);
(2)求f(x)在區間[-1,1]上的最大值和最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com