【題目】在平面直角坐標系
中,已知曲線
:
(
為參數),以平面直角坐標系
的原點
為極點,
軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線
:
.
(1)將曲線
上的所有點的橫坐標、縱坐標分別伸長為原來的
、2倍后得到曲線
,試寫出直線
的直角坐標方程和曲線
的參數方程;
(2)在曲線
上求一點
,使點
到直線
的距離最大,并求出此最大值.
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和Sn=an+n2﹣1,數列{bn}滿足3nbn+1=(n+1)an+1﹣nan , 且b1=3,a1=3.
(1)求數列{ an}和{bn}的通項an , bn;
(2)設Tn為數列{bn}的前n項和,求Tn , 并求滿足Tn<7時n的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的一個焦點與拋物線
的焦點
重合,且點
到直線
的距離為
,
與
的公共弦長為
.
(1)求橢圓
的方程及點
的坐標;
(2)過點
的直線
與
交于
兩點,與
交于
兩點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A是拋物線y2=4x上的一點,以點A和點B(2,0)為直徑的圓C交直線x=1于M,N兩點.直線l與AB平行,且直線l交拋物線于P,Q兩點. ![]()
(Ⅰ)求線段MN的長;
(Ⅱ)若
=﹣3,且直線PQ與圓C相交所得弦長與|MN|相等,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ln(ax+1)﹣ax﹣lna.
(1)討論f(x)的單調性;
(2)若h(x)=ax﹣f(x),當h(x)>0恒成立時,求a的取值范圍;
(3)若存在
,x2>0,使得f(x1)=f(x2)=0,判斷x1+x2與0的大小關系,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com