【題目】某企業生產的一種電器的固定成本(即固定投資)為0.5萬元,每生產一臺這種電器還需可變成本(即另增加投資)25元,市場對這種電器的年需求量為5百臺.已知這種電器的銷售收入R與銷售量t的關系可用拋物線表示,如圖.
![]()
(注:銷售量的單位:百臺,銷售收入與純收益的單位:萬元,生產成本=固定成本+可變成本,精確到1臺和0.01萬元)
(1)寫出銷售收入R與銷售量t之間的函數關系式;
(2)若銷售收入減去生產成本為純收益,寫出純收益與銷售量的函數關系式,并求銷售量是多少時,純收益最大.
科目:高中數學 來源: 題型:
【題目】設三個數
成等差數列,記
對應點的曲線是
.
(1)求曲線
的方程;
(2)已知點
,點
,點
,過點
任作直線
與曲線
相交于
兩點,設直線
的斜率分別為
,若
,求
滿足的關系式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中正確的個數是( )
①球的半徑是球面上任意一點與對球心的連線;
②球面上任意兩點的連線是球的直徑;
③用一個平面截一個球,得到的截面是一個圓;
④用一個平面截一個球,得到的截面是一個圓面;
⑤以半圓的直徑所在直線為軸旋轉形成的曲面叫做球;
⑥空間中到定點的距離等于定長的所有的點構成的曲面是球面.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某地一天從
時的溫度變化曲線近似滿足函數
.
(1)求該地區這一段時間內溫度的最大溫差.
(2)若有一種細菌在
到
之間可以生存,則在這段時間內,該細菌最多能存活多長時間?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】命題p:
x∈R,ax2﹣2ax+1>0,命題q:指數函數f(x)=ax(a>0且a≠1)為減函數,則P是q的( )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業甲,乙兩個研發小組,他們研發新產品成功的概率分別為
和
,現安排甲組研發新產品
,乙組研發新產品
.設甲,乙兩組的研發是相互獨立的.
(1)求至少有一種新產品研發成功的概率;
(2)若新產品
研發成功,預計企業可獲得
萬元,若新產品
研發成功,預計企業可獲得利潤
萬元,求該企業可獲得利潤的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】日本數學家角谷靜夫發現的“
猜想”是指:任取一個自然數,如果它是偶數,我們就把它除以
,如果它是奇數我們就把它乘
再加上
,在這樣一個變換下,我們就得到了一個新的自然數。如果反復使用這個變換,我們就會得到一串自然數,猜想就是:反復進行上述運算后,最后結果為
,現根據此猜想設計一個程序框圖如圖所示,執行該程序框圖輸入的
,則輸出
值為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,一塊長方形區域
,
,
,在邊
的中點
處有一個可轉動的探照燈,其照射角
始終為
,設
,探照燈照射在長方形
內部區域的面積為
.
(1)求
關于
的函數關系式;
(2)當
時,求
的最大值.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com