【題目】已知函數(shù)
有兩個(gè)不同的極值點(diǎn)
.
(1)求
的取值范圍.
(2)求
的極大值與極小值之和的取值范圍.
(3)若
,則
是否有最小值?若有,求出最小值;若沒有,說明理由.
【答案】(1)
(2)
(3)
沒有最小值.見解析
【解析】
(1)先求得函數(shù)
的定義域和導(dǎo)函數(shù),結(jié)合一元二次方程根的分布求得
的取值范圍.
(2)根據(jù)(1)求得
,求得
的表達(dá)式,并利用導(dǎo)數(shù)求得這個(gè)表達(dá)式的取值范圍.
(3)由(2)假設(shè)
,
,則
,求得
的表達(dá)式,并利用導(dǎo)數(shù)研究這個(gè)表達(dá)式的單調(diào)性,由此判斷出這個(gè)表達(dá)式?jīng)]有最小值,也即
沒有最小值.
(1)
定義域?yàn)?/span>
,
.
因?yàn)?/span>
有兩個(gè)不同的極值點(diǎn)
,且
,
所以
有兩個(gè)不同的正根,
,解得
.
(2)因?yàn)?/span>
,不妨設(shè)
,所以
,
,
所以![]()
.
令
,則
,
所以
在
上單調(diào)遞增,所以
,
即
的極大值與極小值之和的取值范圍是
.
(3)由(2)知
.因?yàn)?/span>
,
所以
,
所以
.
因?yàn)?/span>
,所以![]()
.
令
,則
,
所以
在
上單調(diào)遞減,
無最小值,
故
沒有最小值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三年級(jí)有男生
人,編號(hào)為
,
,…,
;女生
人,編號(hào)為
,
,…,
.為了解學(xué)生的學(xué)習(xí)狀態(tài),按編號(hào)采用系統(tǒng)抽樣的方法從這
名學(xué)生中抽取
人進(jìn)行問卷調(diào)查,第一組抽到的號(hào)碼為
,現(xiàn)從這
名學(xué)生中隨機(jī)抽取
人進(jìn)行座談,則這
人中既有男生又有女生的概率是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“劍橋?qū)W派”創(chuàng)始人之一數(shù)學(xué)家哈代說過:“數(shù)學(xué)家的造型,同畫家和詩(shī)人一樣,也應(yīng)當(dāng)是美麗的”;古希臘數(shù)學(xué)家畢達(dá)哥拉斯創(chuàng)造的“黃金分割”給我們的生活處處帶來美;我國(guó)古代數(shù)學(xué)家趙爽創(chuàng)造了優(yōu)美“弦圖”.“弦圖”是由四個(gè)全等的直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形,如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為
,則
等于( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若函數(shù)
的圖象與x軸相切,求實(shí)數(shù)a的值;
(2)討論函數(shù)
的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
分別為橢圓
的左、右焦點(diǎn),
為該橢圓的一條垂直于
軸的動(dòng)弦,直線
與
軸交于點(diǎn)
,直線
與直線
的交點(diǎn)為
.
(1)證明:點(diǎn)
恒在橢圓
上.
(2)設(shè)直線
與橢圓
只有一個(gè)公共點(diǎn)
,直線
與直線
相交于點(diǎn)
,在平面內(nèi)是否存在定點(diǎn)
,使得
恒成立?若存在,求出該點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】響應(yīng)“文化強(qiáng)國(guó)建設(shè)”號(hào)召,某市把社區(qū)圖書閱覽室建設(shè)增列為重要的民生工程.為了解市民閱讀需求,隨機(jī)抽取市民200人做調(diào)查,統(tǒng)計(jì)顯示,男士喜歡閱讀古典文學(xué)的有64人,不喜歡的有56人;女士喜歡閱讀古典文學(xué)的有36人,不喜歡的有44人.
(1)能否在犯錯(cuò)誤的概率不超過0.25的前提下認(rèn)為喜歡閱讀古典文學(xué)與性別有關(guān)系?
(2)為引導(dǎo)市民積極參與閱讀,有關(guān)部門牽頭舉辦市讀書交流會(huì),從這200人中篩選出5名男代表和4名代表,其中有3名男代表和2名女代表喜歡古典文學(xué).現(xiàn)從這9名代表中任選3名男代表和2名女代表參加交流會(huì),記
為參加交流會(huì)的5人中喜歡古典文學(xué)的人數(shù),求
的分布列及數(shù)學(xué)期望
.
附:
,其中
.
參考數(shù)據(jù):
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某項(xiàng)娛樂活動(dòng)的海選過程中評(píng)分人員需對(duì)同批次的選手進(jìn)行考核并評(píng)分,并將其得分作為該選手的成績(jī),成績(jī)大于等于
分的選手定為合格選手,直接參加第二輪比賽,大于等于
分的選手將直接參加競(jìng)賽選拔賽.已知成績(jī)合格的
名參賽選手成績(jī)的頻率分布直方圖如圖所示,其中
的頻率構(gòu)成等比數(shù)列.
![]()
(1)求
的值;
(2)估計(jì)這
名參賽選手的平均成績(jī);
(3)根據(jù)已有的經(jīng)驗(yàn),參加競(jìng)賽選拔賽的選手能夠進(jìn)入正式競(jìng)賽比賽的概率為
,假設(shè)每名選手能否通過競(jìng)賽選拔賽相互獨(dú)立,現(xiàn)有
名選手進(jìn)入競(jìng)賽選拔賽,記這
名選手在競(jìng)賽選拔賽中通過的人數(shù)為隨機(jī)變量
,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】目前有聲書正受著越來越多人的喜愛.某有聲書公司為了解用戶使用情況,隨機(jī)選取了
名用戶,統(tǒng)計(jì)出年齡分布和用戶付費(fèi)金額(金額為整數(shù))情況如下圖.
![]()
有聲書公司將付費(fèi)高于
元的用戶定義為“愛付費(fèi)用戶”,將年齡在
歲及以下的用戶定義為“年輕用戶”.已知抽取的樣本中有
的“年輕用戶”是“愛付費(fèi)用戶”.
(1)完成下面的
列聯(lián)表,并據(jù)此資料,能否有
的把握認(rèn)為用戶“愛付費(fèi)”與其為“年輕用戶”有關(guān)?
愛付費(fèi)用戶 | 不愛付費(fèi)用戶 | 合計(jì) | |
年輕用戶 | |||
非年輕用戶 | |||
合計(jì) |
(2)若公司采用分層抽樣方法從“愛付費(fèi)用戶”中隨機(jī)選取
人,再?gòu)倪@
人中隨機(jī)抽取
人進(jìn)行訪談,求抽取的
人恰好都是“年輕用戶”的概率.
|
|
|
|
|
|
|
|
|
|
|
|
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是由非負(fù)整數(shù)組成的無窮數(shù)列,對(duì)每一個(gè)正整數(shù)
,該數(shù)列前
項(xiàng)的最大值記為
,第
項(xiàng)之后各項(xiàng)
的最小值記為
,記
.
(1)若數(shù)列
的通項(xiàng)公式為
,求數(shù)列
的通項(xiàng)公式;
(2)證明:“數(shù)列
單調(diào)遞增”是“
”的充要條件;
(3)若
對(duì)任意
恒成立,證明:數(shù)列
的通項(xiàng)公式為
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com