已知數(shù)列{an}的前n項和為Sn,且Sn=2an-2(n∈N*),在數(shù)列{bn}中,b1=1,點P(bn,bn+1)在直線x-y+2=0上.
(1)求數(shù)列{an},{bn}的通項公式;
(2)記Tn=a1b1+a2b2+ +anbn,求Tn.
(1)
=2n-1;(2)
.
解析試題分析:(1)利用“當(dāng)n=1,a1=2;當(dāng)n≥2時,an=Sn-Sn-1”和等比數(shù)列的通項公式即可得出an;利用等差數(shù)列的定義和通項公式即可得出bn.
(Ⅱ)先把所求結(jié)論代入求出數(shù)列{cn}的通項,再利用數(shù)列求和的錯位相減法即可求出其各項的和.
試題解析:解(1)由
,得
(n≥2)
兩式相減得
即
(n≥2)
又
,∴![]()
∴{
}是以2為首項,以2為公比的等比數(shù)列 ∴![]()
∵點P(
,
)在直線x-y+2=0上
∴
-
+2="0" 即
-
=2
∴{
}是等差數(shù)列,∵
∴
=2n-1
(2) ∵![]()
∴![]()
兩式相減得,
-![]()
=2+2·![]()
=2+4·![]()
![]()
∴![]()
考點:1.?dāng)?shù)列的求和;2.等比數(shù)列;3.?dāng)?shù)列遞推式.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項均為正數(shù)的等比數(shù)列{an}滿足a3 =8,a5 +a7=160,{an}的前n項和為Sn.
(1)求an;
(2)若數(shù)列{bn}的通項公式為bn=(-1)n·n(n∈N+),求數(shù)列{an·bn}的前n項和Tn。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列
中,
,前
項和是前
項中所有偶數(shù)項和的
倍.
(1)求通項
;
(2)已知
滿足
,若
是遞增數(shù)列,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等比數(shù)列
的前
項和為
,已知
成等差數(shù)列,(1)求數(shù)列
的公比
,(2)若
,求
,并討論
的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
的前
項和為
滿足
(
)
(1)證明數(shù)列
為等比數(shù)列;
(2)設(shè)
,求數(shù)列
的前
項和![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
的前
項和為
,數(shù)列
是公比為
的等比數(shù)列,
是
和
的等比中項.
(1)求數(shù)列
的通項公式;
(2)求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
中,![]()
(1)求
,
;
(2)求證:
是等比數(shù)列,并求
的通項公式
;
(3)數(shù)列
滿足
,數(shù)列
的前n項和為
,若不等式
對一切
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
的前
項和為
,
.
(1)求數(shù)列
的通項公式;
(2)設(shè)
log2an+1 ,求數(shù)列
的前
項和
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的前n項和為Sn,且Sn=4an-3(n∈N*).
(1)證明:數(shù)列{an}是等比數(shù)列;
(2)若數(shù)列{bn}滿足bn+1=an+bn(n∈N*),且b1=2,求數(shù)列{bn}的通項公式.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com