【題目】某項數學競賽考試共四道題,考察內容分別為代數、幾何、數論、組合,已知前兩題每題滿分40分,后兩題每題滿分60分,題目難度隨題號依次遞增,已知學生甲答題時,若該題會做則必得滿分,若該題不會做則不作答得0分,通過對學生甲以往測試情況的統計,得到他在同類模擬考試中各題的得分率,如表所示:
![]()
假設學生甲每次考試各題的得分相互獨立.
(1)若此項競賽考試四道題的順序依次為代數、幾何、數論、組合,試預測學生甲考試得160分的概率;
(2)學生甲研究該項競賽近五年的試題發現第1題都是代數題,于是他在賽前針對代數版塊進行了強化訓練,并取得了很大進步,現在,只要代數題是在試卷第1、2題的位置,他就一定能答對,若今年該項數學競賽考試四道題的順序依次為代數、數論、組合、幾何,試求學生甲此次考試得分X的分布列.
【答案】(1)0.046(2)詳見解析
【解析】
(1)學生甲得160分,即第1,2題做對一道,第3、4題都做對,由此能預測學生甲考試得160分的概率.
(2)由題知學生甲第1題必得40分,只需考慮另三道題的得分情況,從而X的所有可能取值為40,80,100,140,160,200,分別求出相應的概率,能求出X的分布列.
解:(1)學生甲得160分,即第1,2題做對一道,第3、4題都做對,
∴P=(0.6×0.3+0.4×0.7)×0.5×0.2=0.046.
(2)由題知學生甲第1題必得40分,只需考慮另三道題的得分情況,
故X的所有可能取值為40,80,100,140,160,200,
P(X=40)=0.3×0.7×0.7=0.147,
P(X=80)=0.7×0.7×0.7=0.343,
P(X=100)=0.3
,
P(X=140)
,
P(X=160)=0.3×0.3×0.3=0.027,
P(X=200)=0.7×0.3×0.3=0.063.
∴X的分布列為:
![]()
科目:高中數學 來源: 題型:
【題目】某大型科學競技真人秀節目挑選選手的方式為:不但要對選手的空間感知、照相式記憶能力進行考核,而且要讓選手經過名校最權威的腦力測試,120分以上才有機會入圍.某重點高校準備調查腦力測試成績是否與性別有關,在該高校隨機抽取男、女學生各100名,然后對這200名學生進行腦力測試.規定:分數不小于120分為“入圍學生”,分數小于120分為“未入圍學生”.已知男生入圍24人,女生未入圍80人.
(1)根據題意,填寫下面的2×2列聯表,并根據列聯表判斷是否有95%以上的把握認為腦力測試后是否為“入圍學生”與性別有關;
性別 | 入圍人數 | 未入圍人數 | 總計 |
男生 | |||
女生 | |||
總計 |
(2)用分層抽樣的方法從“入圍學生”中隨機抽取11名學生,求這11名學生中男、女生人數;若抽取的女生的腦力測試分數各不相同(每個人的分數都是整數),分別求這11名學生中女生測試分數平均分的最小值.
|
|
|
|
|
|
|
|
|
|
附:
,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】己知橢圓
過點
,
,
是兩個焦點.以橢圓
的上頂點
為圓心作半徑為
的圓,
(1)求橢圓
的方程;
(2)存在過原點的直線
,與圓
分別交于
,
兩點,與橢圓
分別交于
,
兩點(點
在線段
上),使得
,求圓
半徑
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,曲線C的參數方程為
(
為參數,
).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的圾坐標方
,且直線l與曲線C相交于A,B兩點.
(1)求曲線C的普通方程和l的直角坐標方程;
(2)若
,點
滿足
,求此時r的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠為了提高生產效率,對生產設備進行了技術改造,為了對比技術改造后的效果,采集了技術改造前后各20次連續正常運行的時間長度(單位:天)數據,整理如下:
改造前:19,31,22,26,34,15,22,25,40,35,18,16,28,23,34,15,26,20,24,21
改造后:32,29,41,18,26,33,42,34,37,39,33,22,42,35,43,27,41,37,38,36
(1)完成下面的列聯表,并判斷能否有99%的把握認為技術改造前后的連續正常運行時間有差異?
超過30 | 不超過30 | |
改造前 | ||
改造后 |
(2)工廠的生產設備的運行需要進行維護,工廠對生產設備的生產維護費用包括正常維護費,保障維護費兩種.對生產設備設定維護周期為T天(即從開工運行到第kT天,k∈N*)進行維護.生產設備在一個生產周期內設置幾個維護周期,每個維護周期相互獨立.在一個維護周期內,若生產設備能連續運行,則只產生一次正常維護費,而不會產生保障維護費;若生產設備不能連續運行,則除產生一次正常維護費外,還產生保障維護費.經測算,正常維護費為0.5萬元/次;保障維護費第一次為0.2萬元/周期,此后每增加一次則保障維護費增加0.2萬元.現制定生產設備一個生產周期(以120天計)內的維護方案:T=30,k=1,2,3,4.以生產設備在技術改造后一個維護周期內能連續正常運行的頻率作為概率,求一個生產周期內生產維護費的分布列及均值.
附:![]()
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:
(
)過點
,離心率為
.其左、右焦點分別為
,
,O為坐標原點.直線l:
與以線段
為直徑的圓相切,且直線l與橢圓C交于不同的A,B兩點.
(1)求橢圓C的方程;
(2)若滿足
,求
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
:
的右焦點為
,上頂點為
,直線
的斜率為
,且原點到直線
的距離為
.
(1)求橢圓
的標準方程;
(2)若不經過點
的直線
:
與橢圓
交于
兩點,且與圓
相切.試探究
的周長是否為定值,若是,求出定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com