【題目】在
中,角
,
,
所對的邊分別為
,
,
,且
,則下列結(jié)論正確的是( )
A.
B.
是鈍角三角形
C.
的最大內(nèi)角是最小內(nèi)角的
倍D.若
,則
外接圓半徑為![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形
為菱形,
,
平面
,
,
,
為的中點(diǎn).
![]()
(Ⅰ) 求證:
平面![]()
(Ⅱ) 求證:![]()
(Ⅲ)若
為線段
上的點(diǎn),當(dāng)三棱錐
的體積為
時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某市大約有800萬網(wǎng)絡(luò)購物者,某電子商務(wù)公司對該市n名網(wǎng)絡(luò)購物者某年度上半年的消費(fèi)情況進(jìn)行了統(tǒng)計(jì),發(fā)現(xiàn)消費(fèi)金額(單位:萬元)都在區(qū)間[0.5,1.1]內(nèi),其頻率分布直方圖如圖所示.
![]()
(1)求該市n名網(wǎng)絡(luò)購物者該年度上半年的消費(fèi)金額的平均數(shù)與中位數(shù)(以各區(qū)間的中點(diǎn)值代表該區(qū)間的均值).
(2)現(xiàn)從前4組中選取18人進(jìn)行網(wǎng)絡(luò)購物愛好調(diào)查.
(i)求在前4組中各組應(yīng)該選取的人數(shù);
(ii)在前2組所選取的人中,再隨機(jī)選2人,求這2人都是來自第二組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】駐馬店市政府委托市電視臺進(jìn)行“創(chuàng)建森林城市”知識問答活動(dòng),市電視臺隨機(jī)對該市15~65歲的人群抽取了
人,繪制出如圖1所示的頻率分布直方圖,回答問題的統(tǒng)計(jì)結(jié)果如表2所示.
![]()
(1)分別求出
的值;
(2)從第二、三、四、五組回答正確的人中用分層抽樣的方法抽取7人,則從第二、三、四、五組每組回答正確的人中應(yīng)各抽取多少人?
(3)在(2)的條件下,電視臺決定在所抽取的7人中隨機(jī)選2人頒發(fā)幸運(yùn)獎(jiǎng),求所抽取的人中第二組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)若函數(shù)
在其定義域上為單調(diào)增函數(shù),求
的取值范圍;
(2)記
的導(dǎo)函數(shù)為
,當(dāng)
時(shí),證明:
存在極小值點(diǎn)
,且
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】幾個(gè)孩子在一棵枯樹上玩耍,他們均不慎失足下落.已知
(
)甲在下落的過程中依次撞擊到樹枝
,
,
;
(
)乙在下落的過程中依次撞擊到樹枝
,
,
;
(
)丙在下落的過程中依次撞擊到樹枝
,
,
;
(
)丁在下落的過程中依次撞擊到樹枝
,
,
;
(
)戊在下落的過程中依次撞擊到樹枝
,
,
.
倒霉和李華在下落的過程中撞到了從
到
的所有樹枝,根據(jù)以上信息,在李華下落的過程中,和這
根樹枝不同的撞擊次序有( )種.
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校200名學(xué)生的數(shù)學(xué)期中考試成績頻率分布直方圖如圖所示,其中成績分組區(qū)間是
,
,
,
,
.
![]()
(1)求圖中
的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這200名學(xué)生的平均分;
(3)若這200名學(xué)生的數(shù)學(xué)成績中,某些分?jǐn)?shù)段的人數(shù)
與英語成績相應(yīng)分?jǐn)?shù)段的人數(shù)
之比如下表所示,求英語成績在
的人數(shù).
分?jǐn)?shù)段 |
|
|
|
|
|
| 1:2 | 2:1 | 6:5 | 1:2 | 1:1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD內(nèi)接于⊙O,AD∥BC,過點(diǎn)C作⊙O的切線,交BD的延長線于點(diǎn)P,交AD的延長線于點(diǎn)E. ![]()
(1)求證:AB2=DEBC;
(2)若BD=9,AB=6,BC=9,求切線PC的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=sin(2x+φ)+
cos(2x+φ)(0<φ<π)圖象向左平移
個(gè)單位后,得到函數(shù)的圖象關(guān)于點(diǎn)(
,0)對稱,則函數(shù)g(x)=cos(x+φ)在[﹣
,
]上的最小值是( )
A.﹣ ![]()
B.﹣ ![]()
C.![]()
D.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com