【題目】在直角坐標系
中,曲線
的參數方程為
(其中
為參數),曲線
的參數方程為
(其中
為參數),以原點
為極點,
軸的正半軸為極軸建立極坐標系.
(1)求曲線
、
的極坐標方程;
(2)射線
:
與曲線
,
分別交于點
,
(且點
,
均異于原點
),當
時,求
的最小值.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,曲線C的參數方程為:
(
為參數).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,直線l的極坐標方程為
.
(Ⅰ)求曲線C的普通方程和直線l的直角坐標方程;
(Ⅱ)設點P的直角坐標為
,若直線l與曲線C分別相交于A,B兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知極坐標系的極點為直角坐標系xOy的原點,極軸為x軸的正半軸,兩種坐標系中的長度單位相同,圓C的直角坐標方程為
,直線l的參數方程為
(t為參數),射線OM的極坐標方程為
.
(1)求圓C和直線l的極坐標方程;
(2)已知射線OM與圓C的交點為O,P,與直線l的交點為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校在高二年級開設選修課,選課結束后,有6名同學要求改選歷史,現歷史選修課開有三個班,若每個班至多可再接收3名同學,那么不同的接收方案共有( )
A.150種B.360種C.510種D.512種
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的離心率為
,短軸長為
.
(1)求橢圓
的標準方程;
(2)若橢圓
的左焦點為
,過點
的直線
與橢圓
交于
兩點,則在
軸上是否存在一個定點
使得直線
的斜率互為相反數?若存在,求出定點
的坐標;若不存在,也請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,直線l的參數方程為
(t為參數),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為![]()
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)若直線l與曲線C相交于A,B兩點.求![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某生活超市有一專柜預代理銷售甲乙兩家公司的一種可相互替代的日常生活用品.經過一段時間分別單獨試銷甲乙兩家公司的商品,從銷售數據中隨機各抽取50天,統計每日的銷售數量,得到如下的頻數分布條形圖.甲乙兩家公司給該超市的日利潤方案為:甲公司給超市每天基本費用為90元,另外每銷售一件提成1元;乙公司給超市每天的基本費用為130元,每日銷售數量不超過83件沒有提成,超過83件的部分每件提成10元.
![]()
(Ⅰ)求乙公司給超市的日利潤
(單位:元)與日銷售數量
的函數關系;
(Ⅱ)若將頻率視為概率,回答下列問題:
(1)求甲公司產品銷售數量不超過87件的概率;
(2)如果僅從日均利潤的角度考慮,請你利用所學過的統計學知識為超市作出抉擇,選擇哪家公司的產品進行銷售?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某人將編號分別為1,2,3,4,5的5個小球隨機放入編號分別為1,2,3,4,5的5個盒子中,每個盒子中放一個小球若球的編號與盒子的編號相同,則視為“放對”,否則視為“放錯”,則全部“放錯”的情況有________種.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com