【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP,E為棱PD中點. ![]()
(1)求證:PD⊥平面ABE;
(2)若F為AB中點,
,試確定λ的值,使二面角P﹣FM﹣B的余弦值為
.
【答案】
(1)證明:∵PA⊥底面ABCD,AB底面ABCD,∴PA⊥AB,
又∵底面ABCD為矩形,∴AB⊥AD,PA∩AD=A,PA平面PAD,AD平面PAD,
∴AB⊥平面PAD,又PD平面PAD,∴AB⊥PD,AD=AP,E為PD中點,∴AE⊥PD,AE∩AB=A,AE平面ABE,AB平面ABE,∴PD⊥平面ABE
(2)解:以A為原點,以
為x,y,z軸正方向,建立空間直角坐標系A﹣BDP,令|AB|=2,
![]()
則A(0,0,0),B(2,0,0),P(0,0,2),C(2,2,0),E(0,1,1),F(1,0,0),
,
,
,M(2λ,2λ,2﹣2λ)
設平面PFM的法向量
,
,即
, ![]()
設平面BFM的法向量
,
,
即
,
,解得 ![]()
【解析】(I)證明AB⊥平面PAD,推出AB⊥PD,AE⊥PD,AE∩AB=A,即可證明PD⊥平面ABE.(II) 以A為原點,以
為x,y,z軸正方向,建立空間直角坐標系A﹣BDP,求出相關點的坐標,平面PFM的法向量,平面BFM的法向量,利用空間向量的數量積求解即可.
科目:高中數學 來源: 題型:
【題目】設點
,動圓
經過點
且和直線
相切,記動圓的圓心
的軌跡為曲線
.
(1)求曲線
的方程;
(2)設曲線
上一點
的橫坐標為
,過
的直線交
于一點
,交
軸于點
,過點
作
的垂線交
于另一點
,若
是
的切線,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“活水圍網”養魚技術具有養殖密度高、經濟效益好的特點.研究表明:“活水圍網”養魚時,某種魚在一定的條件下,每尾魚的平均生長速度
(單位:千克/年)是養殖密度
(單位:尾/立方米)的函數.當
不超過
尾/立方米時,
的值為
千克/年;當
時,
是
的一次函數,且當
時,
.
(
)當
時,求
關于
的函數的表達式.
(
)當養殖密度
為多大時,每立方米的魚的年生長量(單位:千克/立方米)可以達到最大?并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
.
(1)求函數y=f(x)的解析式,并用“五點法作圖”在給出的直角坐標系中畫出函數y=f(x)在區間[0,π]上的圖象; ![]()
(2)設α∈(0,π),f(
)=
,求sinα的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于f(x)=4sin
(x∈R),有下列命題
①由f(x1)=f(x2)=0可得x1-x2是π的整數倍;
②y=f(x)的表達式可改寫成y=4cos
;
③y=f(x)圖象關于
對稱;
④y=f(x)圖象關于x=-
對稱.
其中正確命題的序號為________(將你認為正確的都填上)。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《最強大腦》是江蘇衛視推出國內首檔大型科學類真人秀電視節目,該節目集結了國內外最頂尖的腦力高手,堪稱腦力界的奧林匹克,某校為了增強學生的記憶力和辨識力也組織了一場類似《最強大腦》的PK賽,A、B兩隊各由4名選手組成,每局兩隊各派一名選手PK,除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分,假設每局比賽兩隊選手獲勝的概率均為0.5,且各局比賽結果相互獨立.
(1)求比賽結束時A隊的得分高于B隊的得分的概率;
(2)求比賽結束時B隊得分X的分布列和期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com