【題目】已知奇函數(shù)
是定義在R上的單調(diào)函數(shù),若函數(shù)
恰有
個(gè)零點(diǎn),則
的取值范圍是( )
A.
B.
C.
D. ![]()
【答案】D
【解析】
利用函數(shù)與方程的關(guān)系,由函數(shù)的奇偶性和單調(diào)性,進(jìn)行轉(zhuǎn)化,利用參數(shù)分離法進(jìn)行求解即可.
∵g(﹣x)=f(x2)+f(a﹣2|x|)=g(x),∴g(x)是偶函數(shù),
若g(x)=f(x2)+f(a﹣2|x|)恰有4個(gè)零點(diǎn),
等價(jià)于當(dāng)x>0時(shí),g(x)有兩個(gè)不同的零點(diǎn),
∵f(x)是奇函數(shù),∴由g(x)=f(x2)+f(a﹣2|x|)=0,
得f(x2)=﹣f(a﹣2|x|)=f(2|x|﹣a),
∵f(x)是單調(diào)函數(shù),∴x2=2|x|﹣a,即﹣a=x2﹣2|x|,
當(dāng)x>0時(shí),﹣a=x2﹣2|x|=x2﹣2x有兩個(gè)根即可,
設(shè)h(x)=x2﹣2x=(x﹣1)2﹣1,
要使當(dāng)x>0時(shí),﹣a=x2﹣2|x|有兩個(gè)根,
則﹣1<﹣a<0,即0<a<1,
即實(shí)數(shù)a的取值范圍是(0,1),
故選:D
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某部門在同一上班高峰時(shí)段對(duì)甲、乙兩地鐵站各隨機(jī)抽取了50名乘客,統(tǒng)計(jì)其乘車等待時(shí)間(指乘客從進(jìn)站口到乘上車的時(shí)間,乘車等待時(shí)間不超過(guò)40分鐘).將統(tǒng)計(jì)數(shù)據(jù)按
分組,制成頻率分布直方圖:
![]()
假設(shè)乘客乘車等待時(shí)間相互獨(dú)立.
(1)在上班高峰時(shí)段,從甲站的乘客中隨機(jī)抽取1人,記為
;從乙站的乘客中隨機(jī)抽取1人,記為
.用頻率估計(jì)概率,求“乘客
,
乘車等待時(shí)間都小于20分鐘”的概率;
(2)從上班高峰時(shí)段,從乙站乘車的乘客中隨機(jī)抽取3人,
表示乘車等待時(shí)間小于20分鐘的人數(shù),用頻率估計(jì)概率,求隨機(jī)變量
的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)擬建一個(gè)糧倉(cāng),如圖1所示,糧倉(cāng)的軸截而如圖2所示,ED=EC,AD
BC,BC⊥AB,EF⊥AB,CD交EF于點(diǎn)G,EF=FC=10m.
![]()
(1)設(shè)∠CFB=θ,求糧倉(cāng)的體積關(guān)于θ的函數(shù)關(guān)系式;
(2)當(dāng)sinθ為何值時(shí),糧倉(cāng)的體積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列
滿足
對(duì)任意的
恒成立,
為其前
項(xiàng)的和,且
.
(1)求數(shù)列
的通項(xiàng)
;
(2)數(shù)列
滿足
,其中
.
①證明:數(shù)列
為等比數(shù)列;
②求集合
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓錐
如圖①所示,圖②是它的正(主)視圖.已知圓
的直徑為
,
是圓周上異于
的一點(diǎn),
為
的中點(diǎn).
(I)求該圓錐的側(cè)面積S;
(II)求證:平面
⊥平面
;
(III)若∠CAB=60°,在三棱錐
中,求點(diǎn)
到平面
的距離.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,三棱柱
的各棱長(zhǎng)都是2,
,
,
,
分別是
,
的中點(diǎn).
![]()
(1)證明:
平面
;
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左頂點(diǎn)為A,左焦點(diǎn)為
,點(diǎn)
在橢圓C上,直線
與橢圓C交于E,F兩點(diǎn),直線AE,AF分別與y軸交于點(diǎn)M,N
Ⅰ
求橢圓C的方程;
Ⅱ
在x軸上是否存在點(diǎn)P,使得無(wú)論非零實(shí)數(shù)k怎樣變化,總有
為直角?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
的圓心在直線
上,且圓
與
:
相切于點(diǎn)
.過(guò)點(diǎn)
作兩條斜率之積為-2的直線分別交圓
于
,
與
,
.
(1)求圓
的標(biāo)準(zhǔn)方程;
(2)設(shè)線段
,
的中點(diǎn)分別為
,
,證明:直線
恒過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線l:y=2x﹣1與雙曲線
(
,
)相交于A、B兩個(gè)不
同的點(diǎn),且
(O為原點(diǎn)).
(1)判斷
是否為定值,并說(shuō)明理由;
(2)當(dāng)雙曲線離心率
時(shí),求雙曲線實(shí)軸長(zhǎng)的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com