【題目】現有一副斜邊長為10的直角三角板,將它們斜邊
重合,若將其中一個三角板沿斜邊折起形成三棱錐
,如圖所示,已知
,
,則三棱錐
的外接球的表面積為______;該三棱錐體積的最大值為_______.
![]()
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數方程為
(t為參數),曲線C的參數方程為
(θ為參數).
(1)當
時,求直線l與曲線C的普通方程;
(2)若直線l與曲線C交于A,B兩點,直線l傾斜角的范圍為(0,
],且P點的直角坐標為(0,2),求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的右焦點為F,直線l與C交于M,N兩點.
(1)若l過點F,點M,N到直線y=2的距離分別為d1,d2,且
,求l的方程;
(2)若點M的坐標為(0,1),直線m過點M交C于另一點N′,當直線l與m的斜率之和為2時,證明:直線NN′過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,共享單車在我國各城市迅猛發展,為人們的出行提供了便利,但也給城市的交通管理帶來了一些困難,為掌握共享單車在
省的發展情況,某調查機構從該省抽取了5個城市,并統計了共享單車的
指標
和
指標
,數據如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
| 2 | 4 | 5 | 6 | 8 |
| 3 | 4 | 4 | 4 | 5 |
(1)試求
與
間的相關系數
,并說明
與
是否具有較強的線性相關關系(若
,則認為
與
具有較強的線性相關關系,否則認為沒有較強的線性相關關系).
(2)建立
關于
的回歸方程,并預測當
指標為7時,
指標的估計值.
(3)若某城市的共享單車
指標
在區間
的右側,則認為該城市共享單車數量過多,對城市的交通管理有較大的影響交通管理部門將進行治理,直至
指標
在區間
內現已知
省某城市共享單車的
指標為13,則該城市的交通管理部門是否需要進行治理?試說明理由.
參考公式:回歸直線
中斜率和截距的最小二乘估計分別為
,,
相關系數![]()
參考數據:
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在直角梯形
中,
,
、
分別是
、
上的點,
,且
(如圖①).將四邊形
沿
折起,連接
、
、
(如圖②).在折起的過程中,則下列表述:
①
平面
;
②四點
、
、
、
可能共面;
③若
,則平面
平面
;
④平面
與平面
可能垂直.其中正確的是__________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com