【題目】如圖,已知城市
周邊有兩個小鎮(zhèn)
、
,其中鄉(xiāng)鎮(zhèn)
位于城市
的正東方
處,鄉(xiāng)鎮(zhèn)
與城市
相距
,
與
夾角的正切值為2,為方便交通,現(xiàn)準(zhǔn)備建設(shè)一條經(jīng)過城市
的公路
,使鄉(xiāng)鎮(zhèn)
和
分別位于
的兩側(cè),過
和
建設(shè)兩條垂直
的公路
和
,分別與公路
交匯于
、
兩點,以
為原點,
所在直線為
軸,建立如圖所示的平面直角坐標(biāo)系
.
![]()
(1)當(dāng)兩個交匯點
、
重合,試確定此時
路段長度;
(2)當(dāng)
,計算此時兩個交匯點
、
到城市
的距離之比;
(3)若要求兩個交匯點
、
的距離不超過
,求
正切值的取值范圍.
【答案】(1)
;(2)
;(3)
.
【解析】
(1)先求出直線
的斜率為1,點B的坐標(biāo)為
,再利用點到直線的距離為|BD|=
;(2)設(shè)直線AB的斜率為
,先求出
再求出
,即得
;(3)先求出
,再求出
解不等式即得解.
(1)當(dāng)兩個交匯點
、
重合時,則AC,BD公路共線,
![]()
過點B作BE⊥AO,垂足為E, 則
,
所以AE=
,所以|BE|=|AE|,
所以直線AB的傾斜角為
,所以直線AB的斜率為
,
所以直線
的斜率為1,
因為點B的坐標(biāo)為
,所以|BD|=
.
(2)由題得A(21,0),設(shè)直線AB的斜率為
,
所以直線AB的方程為
,
因為|AC|=|BD|,
所以
.
由題得
,
所以
,
所以
.
(3)由題得![]()
,
所以
,
所以
.
因為
,
所以![]()
解之得
.
故
正切值的取值范圍為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著計算機的出現(xiàn),圖標(biāo)被賦予了新的含義,又有了新的用武之地.在計算機應(yīng)用領(lǐng)域,圖標(biāo)成了具有明確指代含義的計算機圖形.如圖所示的圖標(biāo)是一種被稱之為“黑白太陽”的圖標(biāo),該圖標(biāo)共分為3部分.第一部分為外部的八個全等的矩形,每一個矩形的長為3、寬為1;第二部分為圓環(huán)部分,大圓半徑為3,小圓半徑為2;第三部分為圓環(huán)內(nèi)部的白色區(qū)域.在整個“黑白太陽”圖標(biāo)中隨機取一點,則此點取自圖標(biāo)第三部分的概率為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,動圓
與圓
外切,且圓
與直線
相切,記動圓圓心
的軌跡為曲線
.
(1)求曲線
的軌跡方程;
(2)設(shè)過定點
的動直線
與曲線
交于
兩點,試問:在曲線
上是否存在點
(與
兩點相異),當(dāng)直線
的斜率存在時,直線
的斜率之和為定值?若存在,求出點
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
的三邊分別為
所對的角分別為
,且三邊滿足
,已知
的外接圓的面積為
,設(shè)
.則
的取值范圍為______,函數(shù)
的最大值的取值范圍為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
的內(nèi)角
、
、
的對邊分別為
、
、
,
為
內(nèi)一點,若分別滿足下列四個條件:
①
;
②
;
③
;
④
;
則點
分別為
的( )
A.外心、內(nèi)心、垂心、重心B.內(nèi)心、外心、垂心、重心
C.垂心、內(nèi)心、重心、外心D.內(nèi)心、垂心、外心、重心
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一旅游景區(qū)供游客行走的路線圖,假設(shè)從進口
開始到出口
,每遇到一個岔路口,每位游客選擇其中一條道路行進是等可能的.現(xiàn)有甲、乙、丙、丁共
名游客結(jié)伴到旅游景區(qū)游玩,他們從進口
的岔路口就開始選擇道路自行游玩,并按箭頭所指路線行走,最后到出口
集中,設(shè)點
是其中的一個交叉路口點.
(1)求甲經(jīng)過點
的概率;
(2)設(shè)這
名游客中恰有
名游客都是經(jīng)過點
,求隨機變量
的概率分布和數(shù)學(xué)期望.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘雅典學(xué)派算學(xué)家歐道克薩斯提出了“黃金分割”的理論,利用尺規(guī)作圖可畫出己知線段的黃金分割點,具體方法如下:(l)取線段AB=2,過點B作AB的垂線,并用圓規(guī)在垂線上截取BC=
AB,連接AC;(2)以C為圓心,BC為半徑畫弧,交AC于點D;(3)以A為圓心,以AD為半徑畫弧,交AB于點E.則點E即為線段AB的黃金分割點.若在線段AB上隨機取一點F,則使得BE≤AF≤AE的概率約為( )(參考數(shù)據(jù):
2.236)
![]()
A. 0.236B. 0.382C. 0.472D. 0.618
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形
中,
,
,
,
,
,
分別在
,
上,
,現(xiàn)將四邊形
沿
折起,使平面
平面
.
(Ⅰ)若
,在折疊后的線段
上是否存在一點
,且
,使得
平面
?若存在,求出
的值;若不存在,說明理由;
(Ⅱ)當(dāng)三棱錐
的體積最大時,求二面角
的余弦值.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com