若數列
滿足
,則當
取最小值時
的值為( )
A.
或
B.
C.
D.
或![]()
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
| sin2a3-cos2a3+cos2a3cos2a6-sin2a3sin2a6 |
| sin(a4+a5) |
| 4π |
| 3 |
| 3π |
| 2 |
| 4π |
| 3 |
| 3π |
| 2 |
查看答案和解析>>
科目:高中數學 來源:2007年普通高等學校招生全國統一考試理科數學卷(上海) 題型:解答題
若有窮數列
(
是正整數),滿足
即![]()
(
是正整數,且
),就稱該數列為“對稱數列”。
(1)已知數列
是項數為7的對稱數列,且
成等差數列,
,試寫出
的每一項
(2)已知
是項數為
的對稱數列,且
構成首項為50,公差為
的等差數列,數列
的前
項和為
,則當
為何值時,
取到最大值?最大值為多少?
(3)對于給定的正整數
,試寫出所有項數不超過
的對稱數列,使得
成為數列中的連續項;當
時,試求其中一個數列的前2008項和![]()
查看答案和解析>>
科目:高中數學 來源:2011-2012學年上海市崇明縣高三高考模擬考試二模理科數學試卷(解析版) 題型:解答題
已知數列
是各項均不為0的等差數列,公差為d,
為其前n項和,且滿足
,
.數列
滿足
,
,
為數列
的前n項和.
(1)求數列
的通項公式
和數列
的前n項和
;
(2)若對任意的
,不等式
恒成立,求實數
的取值范圍;
(3)是否存在正整數![]()
,使得
成等比數列?若存在,求出所有
的值;若不存在,請說明理由.
【解析】第一問利用在
中,令n=1,n=2,
得
即
解得
,,
[
又
時,
滿足
,![]()
,
![]()
第二問,①當n為偶數時,要使不等式
恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當n為奇數時,要使不等式
恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
第三問
,
若
成等比數列,則
,
即. ![]()
由
,可得
,即
,
. ![]()
(1)(法一)在
中,令n=1,n=2,
得
即
解得
,,
[
又
時,
滿足
,![]()
,
.
(2)①當n為偶數時,要使不等式
恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當n為奇數時,要使不等式
恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
綜合①、②可得
的取值范圍是
.
(3)
,
若
成等比數列,則
,
即. ![]()
由
,可得
,即
,
. ![]()
又
,且m>1,所以m=2,此時n=12.
因此,當且僅當m=2,
n=12時,數列
中的
成等比數列
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com