【題目】已知等差數列
的前
項和為
,等比數列
的前
項和為
,且
,
,
.
(1)若
,求
的通項公式;
(2)若
,求
.
【答案】(1)
;(2)21或
.
【解析】試題分析:(1)設等差數列
公差為
,等比數列
公比為
,由已知條件求出
,再寫出通項公式;(2)由
,求出
的值,再求出
的值,求出
。
試題解析:設等差數列
公差為
,等比數列
公比為
有
,即
.
(1)∵
,結合
得
,
∴
.
(2)∵
,解得
或3,
當
時,
,此時
;
當
時,
,此時
.
【題型】解答題
【結束】
20
【題目】如圖,已知直線與拋物線
相交于
兩點,且
,
交
于
,且點
的坐標為
.
![]()
(1)求
的值;
(2)若
為拋物線的焦點,
為拋物線上任一點,求
的最小值.
科目:高中數學 來源: 題型:
【題目】設函數f′(x)是奇函數f(x)(x∈R)的導函數,f(﹣1)=0,當x>0時,xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列
中,公差
,
,且
成等比數列.
(1)求數列
的通項公式;
(2)若
為數列
的前
項和,且存在
,使得
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小張經營某一消費品專賣店,已知該消費品的進價為每件40元,該店每月銷售量(百件)與銷售單價x(元/件)之間的關系用下圖的一折線表示,職工每人每月工資為1000元,該店還應交付的其它費用為每月10000元.
![]()
(1)把y表示為x的函數;
(2)當銷售價為每件50元時,該店正好收支平衡(即利潤為零),求該店的職工人數;
(3)若該店只有20名職工,問銷售單價定為多少元時,該專賣店可獲得最大月利潤?(注:利潤=收入-支出)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的左、右焦點分別為
,上、下頂點分別是
,點
是
的中點,若
,且
.
(1)求橢圓
的標準方程;
(2)過
的直線
與橢圓
交于不同的兩點
,求
的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x+
+lnx,a∈R. (Ⅰ)若f(x)在x=1處取得極值,求a的值;
(Ⅱ)若f(x)在區間(1,2)上單調遞增,求a的取值范圍;
(Ⅲ)討論函數g(x)=f'(x)﹣x的零點個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,平面ABEF⊥平面ABC,四邊形ABEF為矩形,AC=BC.O為AB的中點,OF⊥EC. (Ⅰ)求證:OE⊥FC:
(Ⅱ)若
=
時,求二面角F﹣CE﹣B的余弦值.![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com