【題目】已知曲線(xiàn)C的極坐標(biāo)方程是ρ=4cosθ.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直l的參數(shù)方程是
(t是參數(shù))
(1)將曲線(xiàn)C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若直線(xiàn)l與曲線(xiàn)C相交于A、B兩點(diǎn),且|AB|=
,求直線(xiàn)的傾斜角α的值.
【答案】
(1)解:∵ρcosθ=x,ρsinθ=y,ρ2=x2+y2,
∴曲線(xiàn)C的極坐標(biāo)方程是ρ=4cosθ可化為:
ρ2=4ρcosθ,
∴x2+y2=4x,
∴(x﹣2)2+y2=4
(2)解:將
代入圓的方程(x﹣2)2+y2=4得:
(tcosα﹣1)2+(tsinα)2=4,
化簡(jiǎn)得t2﹣2tcosα﹣3=0.
設(shè)A、B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1、t2,
則
,
∴|AB|=|t1﹣t2|=
=
,
∵|AB|=
,
∴
=
.
∴cos
.
∵α∈[0,π),
∴
或
.
∴直線(xiàn)的傾斜角
或 ![]()
【解析】本題(1)可以利用極坐標(biāo)與直角坐標(biāo) 互化的化式,求出曲線(xiàn)C的直角坐標(biāo)方程;(2)先將直l的參數(shù)方程是
(t是參數(shù))化成普通方程,再求出弦心距,利用勾股定理求出弦長(zhǎng),也可以直接利用直線(xiàn)的參數(shù)方程和圓的普通方程聯(lián)解,求出對(duì)應(yīng)的參數(shù)t1 , t2的關(guān)系式,利用|AB|=|t1﹣t2|,得到α的三角方程,解方程得到α的值,要注意角α范圍.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若m﹣
<x
(m∈Z),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x},即m={x},關(guān)于函數(shù)f(x)=x﹣{x}的四個(gè)命題:①定義域?yàn)镽,值域?yàn)椋ī?
,
]; ②點(diǎn)(k,0)是函數(shù)f(x)圖象的對(duì)稱(chēng)中心(k∈Z);③函數(shù)f(x)的最小正周期為1; ④函數(shù)f(x)在(﹣
,
]上是增函數(shù).上述命題中,真命題的序號(hào)是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:
①如果
,
是兩條直線(xiàn),且
,那么
平行于經(jīng)過(guò)
的任何平面;
②如果直線(xiàn)
和平面
滿(mǎn)足
,那么直線(xiàn)
與平面
內(nèi)的任何直線(xiàn)平行;
③如果直線(xiàn)
,
和平面
滿(mǎn)足
,
,那么
;
④如果直線(xiàn)
,
和平面
滿(mǎn)足
,
,
,那么
;
⑤如果平面
,
,
滿(mǎn)足
,
,那么
.
其中正確命題的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究某藥品的療效,選取若干名志愿者進(jìn)行臨床試驗(yàn),所有志愿者的舒張壓數(shù)據(jù)(單位:
)的分組區(qū)間為
,
,
,
,
,將其按從左到右的順序分別編號(hào)為第一組,第二組,
,第五組,如圖是根據(jù)試驗(yàn)數(shù)據(jù)制成的頻率分布直方圖,已知第一組與第二組共有20人,第三組沒(méi)有療效的有6人,則第三組中有療效的人數(shù)為__________.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)y=
cosx+sinx(x∈R)的圖象向左平移m(m>0)個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于y軸對(duì)稱(chēng),則m的最小值是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等差數(shù)列{an}中,a2=6,a3+a6=27.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}的通項(xiàng)公式為
,求數(shù)列{anbn}的前n項(xiàng)的和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在
ABC中,角A,B,C的對(duì)邊分別是a,b,c,已知2acosA=-
(ccosB+bcosC)。
(1)求角A;
(2)若b=2,且
ABC的面積為
,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,若m<n,且f(m)=f(n),則n﹣m的取值范圍是( )
A.[3﹣2ln2,2)
B.[3﹣2ln2,2]
C.[e﹣1,2]
D.[e﹣1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=
,若f(1-x)=f(1+x),且f(0)=3.
(Ⅰ)求b,c的值;
(Ⅱ)試比較
(m∈R)的大小.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com