【題目】已知圓
與直線
相切.
(1)求圓
的方程;
(2)過點
的直線
截圓
所得弦長為
,求直線
的方程;
(3)設(shè)圓
與
軸的負半抽的交點為
,過點
作兩條斜率分別為
的直線交圓
于
兩點,且
,證明:直線
過定點,并求出該定點坐標.
科目:高中數(shù)學 來源: 題型:
【題目】《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80mg/100ml(不含80)之間,屬于酒后駕車;在80mg/100ml(含80)以上時,屬于醉酒駕車.某市公安局交通管理部門在某路段的一次攔查行動中,依法檢查了300輛機動車,查處酒后駕車和醉酒駕車的駕駛員共20人,檢測結(jié)果如表:
酒精含量(mg/100ml) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70)[] | [70,80) | [80,90) | [90,100] |
人數(shù) | 3 | 4 | 1 | 4 | 2 | 3 | 2 | 1 |
(Ⅰ)繪制出檢測數(shù)據(jù)的頻率分布直方圖(在圖中用實線畫出矩形框即可);
(Ⅱ)求檢測數(shù)據(jù)中醉酒駕駛的頻率,并估計檢測數(shù)據(jù)中酒精含量的眾數(shù)、平均數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖①所示,四邊形
為等腰梯形,
,且
于點
為
的中點.將
沿著
折起至
的位置,得到如圖②所示的四棱錐
.
![]()
(1)求證:
平面
;
(2)若平面
平面
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準
(噸)、一位居民的月用水量不超過
的部分按平價收費,超過
的部分按議價收費,為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照
分成9組,制成了如圖所示的頻率分布直方圖.
![]()
(1)求直方圖中
的值;
(2)設(shè)該市有30萬居民,估計全市居民中月均用量不低于3噸的人數(shù),并說明理由;
(3)若該市政府希望使85%的居民每月的用水量不超過標準
(噸),估計
的值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點
是直線
與橢圓
的一個公共點,
分別為該橢圓的左右焦點,設(shè)
取得最小值時橢圓為
.
(I)求橢圓
的方程;
(II)已知
是橢圓
上關(guān)于
軸對稱的兩點,
是橢圓
上異于
的任意一點,直線
分別與
軸交于點
,試判斷
是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列各式:
(1)
;
(2)已知
,則
;
(3)函數(shù)
的圖象與函數(shù)
的圖象關(guān)于y軸對稱;
(4)函數(shù)
的定義域是R,則m的取值范圍是
;
(5)函數(shù)
的遞增區(qū)間為
.
正確的有______________________.(把你認為正確的序號全部寫上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)集合A={x|-1≤x≤2},B={x|m-1≤x≤2m+1},已知BA.
(1)當x∈N時,求集合A的子集的個數(shù);
(2)求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)
.
(1)若
是函數(shù)
的極值點,1和
是函數(shù)
的兩個不同零點,且
,求
.
(2)若對任意
,都存在
(
為自然對數(shù)的底數(shù)),使得
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com