(本小題滿分12分)
設(shè)函數(shù)
.
(1)對于任意實數(shù)
,
在
恒成立(其中
表示
的導(dǎo)函數(shù)),求
的最大值;
(2)若方程
在
上有且僅有一個實根,求
的取值范圍.
(1)
(2)
.
解析試題分析:解:(1)
,
.
法一:
在
恒成立
在
恒成立.…………………3分
由
在
的最小值為
,
所以,得
,即
的最大值為
. …………………………………………………6分
法二:令
,
.
要使
在
恒成立,則只需
在
恒成立.
由于
的對稱軸為
,當
時,
,
解得
,所以
的最大值為
.……………………………………………………6分
(2)因為當
時,
;當
時,
;當
時,
;
即
在
和
單增,在
單減.
所以
,
.………………………………9分
故當
或
時,方程
僅有一個實根.
得
或
時,方程
僅有一個實根.
所以
.………………………………………………………………12分
考點:導(dǎo)數(shù)在研究函數(shù)中的運用
點評:根據(jù)導(dǎo)數(shù)不等式恒成立,來分析函數(shù)的最值來得到結(jié)論,同時對于方程根的問題,轉(zhuǎn)化為圖像與坐標軸的交點情況來說明即可,屬于中檔題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,若存在
使得
恒成立,則稱
是
的
一個“下界函數(shù)” .
(I)如果函數(shù)
(t為實數(shù))為
的一個“下界函數(shù)”,
求t的取值范圍;
(II)設(shè)函數(shù)
,試問函數(shù)
是否存在零點,若存在,求出零點個數(shù);
若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)
.
(1)若
的兩個極值點為
,且
,求實數(shù)
的值;
(2)是否存在實數(shù)
,使得
是
上的單調(diào)函數(shù)?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題14分)已知函數(shù)
在
處取得極值,且在
處的切線的斜率為1。
(Ⅰ)求
的值及
的單調(diào)減區(qū)間;
(Ⅱ)設(shè)
>0,
>0,
,求證:
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
本小題滿分12分)設(shè)M是由滿足下列條件的函數(shù)f (x)構(gòu)成的集合:①方程f (x)一x=0有實根;②函數(shù)的導(dǎo)數(shù)
滿足0<
<1.
(1)若函數(shù)f(x)為集合M中的任意一個元素,證明:方程f(x)一x=0只有一個實根;
(2)判斷函數(shù)
是否是集合M中的元素,并說明理由;
(3)設(shè)函數(shù)f(x)為集合M中的任意一個元素,對于定義域中任意
,
證明:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分)
已知函數(shù)
,
是
的導(dǎo)函數(shù)(
為自然對數(shù)的底數(shù))
(Ⅰ)解關(guān)于
的不等式:
;
(Ⅱ)若
有兩個極值點
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知
在
處有極值,其圖象在
處的切線與直線
平行.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若
時,
恒成立,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)f(x)=x3-ax2-3x.
(1)若f(x)在x∈[1,+∞)上是增函數(shù),求實數(shù)a的取值范圍;
(2)若x=3是f(x)的極值點,求f(x)在x∈[1,a]上的最小值和最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com