【題目】已知橢圓C:
的兩個焦點分別為
,點M(1,0)與橢圓短軸的兩個端點的連線相互垂直.
(1)求橢圓C的方程;
(2)過點M(1,0)的直線與橢圓C相交于A、B兩點,設點N(3,2),記直線AN、BN的斜率分別為k1、k2,求證:k1+k2為定值.
科目:高中數學 來源: 題型:
【題目】已知點
為拋物線
內一定點,過
作兩條直線交拋物線于
,且
分別是線段
的中點.
![]()
(1)當
時,求△
的面積的最小值;
(2)若
且
,證明:直線
過定點,并求定點坐標。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
(
,
)展開式的前三項的二項式系數之和為16,所有項的系數之和為1.
(1)求
和
的值;
(2)展開式中是否存在常數項?若有,求出常數項;若沒有,請說明理由;
(3)求展開式中二項式系數最大的項.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2015年12月10日,我國科學家屠呦呦教授由于在發現青蒿素和治療瘧疾的療法上的貢獻獲得諾貝爾醫學獎,以青蒿素類藥物為主的聯合療法已經成為世界衛生組織推薦的抗瘧疾標準療法,目前,國內青蒿人工種植發展迅速,調查表明,人工種植的青蒿的長勢與海撥高度、土壤酸堿度、空氣濕度的指標有極強的相關性,現將這三項的指標分別記為
,并對它們進行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標
的值評定人工種植的青蒿的長勢等級,若
,則長勢為一級;若
,則長勢為二極;若
,則長勢為三級,為了了解目前人工種植的青蒿的長勢情況,研究人員隨機抽取了10塊青蒿人工種植地,得到如下結果:
種植地編號 |
|
|
|
|
|
|
|
|
|
|
|
種植地編號 |
|
|
|
|
|
|
|
|
|
|
|
(1)若該地有青蒿人工種植地180個,試估計該地中長勢等級為三級的個數;
(2)從長勢等級為一級的青蒿人工種植地中隨機抽取兩個,求這兩個人工種植地的綜合指標
均為4個概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計劃在S市的A區開設分店.為了確定在該區開設分店的個數,該公司對該市已開設分店的其他區的數據作了初步處理后得到下列表格.記x表示在各區開設分店的個數,y表示這x個分店的年收入之和.
x(個) | 2 | 3 | 4 | 5 | 6 |
y(百萬元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)該公司經過初步判斷,可用線性回歸模型擬合y與x的關系,求y關于x的線性回歸方程;
(2)假設該公司在A區獲得的總年利潤z(單位:百萬元)與x,y之間滿足的關系式為:
,請結合(1)中的線性回歸方程,估算該公司應在A區開設多少個分店,才能使A區平均每個分店的年利潤最大?
附:回歸方程
中的斜率和截距的最小二乘估計公式分別為:
,
.
(參考數據:
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地級市共有200000中小學生,其中有7%學生在2017年享受了“國家精準扶貧”政策,在享受“國家精準扶貧”政策的學生中困難程度分為三個等次:一般困難、很困難、特別困難,且人數之比為5:3:2,為進一步幫助這些學生,當地市政府設立“專項教育基金”,對這三個等次的困難學生每年每人分別補助1000元、1500元、2000元。經濟學家調查發現,當地人均可支配年收入較上一年每增加n%,一般困難的學生中有3n%會脫貧,脫貧后將不再享受“精準扶貧”政策,很困難的學生中有2n%轉為一般困難,特別困難的學生中有n%轉為很困難。現統計了該地級市2013年到2017年共5年的人均可支配年收入,對數據初步處理后得到了如圖所示的散點圖和表中統計量的值,其中年份
取13時代表2013年,
與
(萬元)近似滿足關系式
,其中
為常數。(2013年至2019年該市中學生人數大致保持不變)
其中
, ![]()
(Ⅰ)估計該市2018年人均可支配年收入;
(Ⅱ)求該市2018年的“專項教育基金”的財政預算大約為多少?
附:①對于一組具有線性相關關系的數據
,其回歸直線方程
的斜率和截距的最小二乘估計分別為![]()
②![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年5月27日當今世界圍棋排名第一的柯潔在與
的人機大戰中中盤棄子認輸,至此柯潔與
的三場比賽全部結束,柯潔三戰全負,這次人機大戰再次引發全民對圍棋的關注,某學校社團為調查學生學習圍棋的情況,隨機抽取了100名學生進行調查,根據調查結果繪制的學生日均學習圍棋時間的頻率分布直方圖(如圖所示),將日均學習圍棋時間不低于40分鐘的學生稱為“圍棋迷”.
![]()
(1)請根據已知條件完成下面
列聯表,并據此資料你是否有95%的把握認為“圍棋迷”與性別有關?
非圍棋迷 | 圍棋迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(2)將上述調查所得到的頻率視為概率,現在從該地區大量學生中,采用隨機抽樣方法每次抽取1名學生,抽取3次,記被抽取的3名學生中的“圍棋迷”人數為
,若每次抽取的結果是相互獨立的,求
的分布列,數學期望和方差.
獨立性檢查臨界值表:
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | … |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | … |
(參考公式:
,其中
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com