拋物線
,其準線方程為
,過準線與
軸的交點
做直線
交拋物線于
兩點.
(1)若點
為
中點,求直線
的方程;
(2)設拋物線的焦點為
,當
時,求
的面積.
(1)
或
;(2)4.
解析試題分析:(1)首先根據準線方程求得拋物線的標準方程,然后設直線直線l的方程
,并與拋物線方程聯立消去x得到關于y的二次方程,再利用韋達定理與中點坐標公式可求得m的值,進而得到直線l的方程;(2)根據條件中的垂直關系,利用A、B、F三點的坐標表示出向量
與
,然后利用向量垂直的條件可得
的值,進而可求得
的面積.
試題解析:(1)∵拋物線的準線方程為
,∴![]()
∴拋物線的方程為
,
顯然,直線
與坐標軸不平行
∴設直線
的方程為
,
,
聯立直線與拋物線的方程
,得
,
,解得
或
.
∵點
為
中點,∴
,即![]()
∴
解得
,
,∴
或![]()
∴
,
直線方程為
或
.
(2)焦點
,![]()
∵![]()
![]()
![]()
∴
,![]()
.
考點:1、直線方程;2、拋物線方程;3、直線與拋物線的位置關系;4、平面向量垂直的充要條件的應用.
科目:高中數學 來源: 題型:解答題
已知直線
過點
且與拋物線
交于A、B兩點,以弦AB為直徑的圓恒過坐標原點O.![]()
(1)求拋物線的標準方程;
(2)設
是直線
上任意一點,求證:直線QA、QM、QB的斜率依次成等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線
的頂點在坐標原點
,對稱軸為
軸,焦點為
,拋物線上一點
的橫坐標為2,且
.
(1)求拋物線的方程;
(2)過點
作直線
交拋物線于
,
兩點,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓
:
的離心率為
,點
為其下焦點,點
為坐標原點,過
的直線
:
(其中
)與橢圓
相交于
兩點,且滿足:
.![]()
(1)試用
表示
;
(2)求
的最大值;
(3)若
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知點
和
,圓
是以
為圓心,半徑為
的圓,點
是圓
上任意一點,線段
的垂直平分線
和半徑
所在的直線交于點
.
(Ⅰ)當點
在圓上運動時,求點
的軌跡方程
;
(Ⅱ)已知
,
是曲線
上的兩點,若曲線
上存在點
,滿足
(
為坐標原點),求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
:
經過如下五個點中的三個點:
,
,
,
,
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設點
為橢圓
的左頂點,
為橢圓
上不同于點
的兩點,若原點在
的外部,且
為直角三角形,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
:
的離心率為
且與雙曲線
:
有共同焦點.
(1)求橢圓
的方程;
(2)在橢圓
落在第一象限的圖像上任取一點作
的切線
,求
與坐標軸圍成的三角形的面積的最小值;
(3)設橢圓
的左、右頂點分別為
,過橢圓
上的一點
作
軸的垂線交
軸于點
,若
點滿足
,
,連結
交
于點
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的左、右焦點分別為
,橢圓的離心率為
,且橢圓經過點
.
(1)求橢圓C的標準方程;
(2)線段
是橢圓過點
的弦,且
,求
內切圓面積最大時實數
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com