【題目】已知函數y=f(x)在區間[a,b]上的圖象是連續不斷的一條曲線,有下列說法:
①若f(a)f(b)>0,則函數y=f(x)在區間(a,b)上沒有零點;
②若f(a)f(b)>0,則函數y=f(x)在區間(a,b)上可能有零點;
③若f(a)f(b)<0,則函數y=f(x)在區間(a,b)上沒有零點;
④若f(a)f(b)<0,則函數y=f(x)在區間(a,b)上至少有一個零點;
其中正確說法的序號是(把所有正確說法的序號都填上).
科目:高中數學 來源: 題型:
【題目】已知集合A={x|﹣2≤x<5},B={x|3x﹣5≥x﹣1}.
(1)求A∩B;
(2)若集合C={x|﹣x+m>0},且A∪C=C,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
.
(1)若橢圓
的右焦點坐標為
,求
的值;
(2)由橢圓
上不同三點構成三角形稱為橢圓的內接三角形.若以
為直角頂點的橢圓
的內接等腰直角三角形恰有三個,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐
中,底面
為梯形,
底面
,
,
,
,
.
![]()
(1)求證:平面
平面
;
(2)設
為
上的一點,滿足
,若直線
與平面
所成角的正切值為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)已知橢圓
的離心率為
,橢圓的短軸端點與雙曲線
的焦點重合,過點
且不垂直于
軸的直線
與橢圓
相交于
兩點.
(1)求橢圓
的方程;
(2)求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐
中, 底面
為菱形,
平面
,點
在棱
上.
(Ⅰ)求證:直線
平面
;
(Ⅱ)若
平面
,求證:
;
(Ⅲ)是否存在點
,使得四面體
的體積等于四面體
的體積的
?若存在,求出
的值;若不存在,請說明理由.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com