【題目】在2015﹣2016賽季CBA聯賽中,某隊甲、乙兩名球員在前10場比賽中投籃命中情況統計如下表(注:表中分數
,N表示投籃次數,n表示命中次數),假設各場比賽相互獨立.
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
甲 |
|
|
|
|
|
|
|
|
|
|
乙 |
|
|
|
|
|
|
|
|
|
|
根據統計表的信息:
(1)從上述比賽中等可能隨機選擇一場,求甲球員在該場比賽中投籃命中率大于0.5的概率;
(2)試估計甲、乙兩名運動員在下一場比賽中恰有一人命中率超過0.5的概率;
(3)在接下來的3場比賽中,用X表示這3場比賽中乙球員命中率超過0.5的場次,試寫出X的分布列,并求X的數學期望.
【答案】
(1)解:根據投籃統計數據,在10場比賽中,
甲球員投籃命中率超過0.5的場次有5場,分別是4,5,6,7,10,
所以在隨機選擇的一場比賽中,
甲球員的投籃命中率超過0.5的概率是
.
在10場比賽中,乙球員投籃命中率超過0.5的場次有4場,分別是3,6,8,10,
所以在隨機選擇的一場比賽中,乙球員的投籃命中率超過0.5的概率是
.
(2)解:設在一場比賽中,甲、乙兩名運動員恰有一人命中率超過0.5為事件A,
甲隊員命中率超過0.5且乙隊員命中率不超過0.5為事件B1,
乙隊員命中率超過0.5且甲隊員命中率不超過0.5為事件B2.
則P(A)=P(B1)+P(B2)=
=
.
(3)解:X的可能取值為0,1,2,3.
P(X=0)=
=
,
P(X=1)=
,
P(X=2)=
=
,
P(X=3)=
=
,
X的分布列如下表:
X | 0 | 1 | 2 | 3 |
P |
|
|
|
|
∵X~B(3,
),∴EX=3×
= ![]()
【解析】(1)根據投籃統計數據,利用列舉法能求出甲球員的投籃命中率超過0.5的概率和乙球員投籃命中率超過0.5的概率.(2)設在一場比賽中,甲、乙兩名運動員恰有一人命中率超過0.5為事件A,甲隊員命中率超過0.5且乙隊員命中率不超過0.5為事件B1 , 乙隊員命中率超過0.5且甲隊員命中率不超過0.5為事件B2 . 由P(A)=P(B1)+P(B2),能求出甲、乙兩名運動員在下一場比賽中恰有一人命中率超過0.5的概率.(3)X的可能取值為0,1,2,3,且B~B(3,
),由此能求出X的分布列及數學期望.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,已知點
和
.
(
)若
,
是正方形一條邊上的兩個頂點,求這個正方形過頂點
的兩條邊所在直線的方程;
(
)若
,
是正方形一條對角線上的兩個頂點,求這個正方形另外一條對角線所在直線的方程及其端點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2
sin(
ωx)cos(
ωx)+2cos2(
ωx)(ω>0),且函數f(x)的最小正周期為π.
(1)求ω的值;
(2)求f(x)在區間
上的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=2ln(x+2)﹣(x+1)2 , g(x)=k(x+1).
(1)求f(x)的單調區間;
(2)當k=2時,求證:對于x>﹣1,f(x)<g(x)恒成立;
(3)若存在x0>﹣1,使得當x∈(﹣1,x0)時,恒有f(x)>g(x)成立,試求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著社會的發展,食品安全問題漸漸成為社會關注的熱點,為了提高學生的食品安全意識,某學校組織全校學生參加食品安全知識競賽,成績的頻率分布直方圖如圖所示,數據的分組依次為[20,40),[40,60),[60,80),[80,100),若該校的學生總人數為3000,則成績不超過60分的學生人數大約為 . ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC,E是PC的中點,
![]()
(1)證明:PA∥平面EDB
(2)證明:平面BDE
平面PCB
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列
的前
項和為
,且滿足
,求數列
的通項公式.勤于思考的小紅設計了下面兩種解題思路,請你選擇其中一種并將其補充完整.
思路1:先設
的值為1,根據已知條件,計算出
,
,
.
猜想:
.
然后用數學歸納法證明.證明過程如下:
①當
時, , 猜想成立
②假設
(
N*)時,猜想成立,即
.
那么,當
時,由已知
,得
.
又
,兩式相減并化簡,得
(用含
的代數式表示).
所以,當
時,猜想也成立.
根據①和②,可知猜想對任何
N*都成立.
思路2:先設
的值為1,根據已知條件,計算出
.
由已知
,寫出
與
的關系式:
,
兩式相減,得
與
的遞推關系式:
.
整理:
.
發現:數列
是首項為 , 公比為的等比數列.
得出:數列
的通項公式
, 進而得到
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com