【題目】已知正整數數列
滿足:
,
,
(
).
(1)已知
,
,試求
、
的值;
(2)若
,求證:
;
(3)求
的取值范圍.
【答案】(1)
;(2)詳見解析;(3)![]()
【解析】
(1)根據遞推式賦值逆推,分別求出
即可求出
的值;
(2)根據遞推式賦值求出
的值,即可找出數列
的規律,由此得證;
(3)依據
,討論
與
的大小關系即可得出.
(1)令
得,
,解得
;
令
得,
,解得
;
令
得,
,解得
;
令
得,
,解得
;
所以
.
(2)證明:令
得,
,因為數列
各項為正整數,
2019的正整數約數有1,3,673,2019,因此
的值可能為3,673,2019,即
或
或
.
當
時,
,
,所以不符題意,應舍去;
當
時,
,
,所以不符題意,應舍去;
當
時,
,
,
,
,……
所以
,當
為奇數時,
;當
為偶數時,
;
故
,不等式成立.
(3)由(1)(2)可知,當
或
可以滿足題意,所以
或
.
.
①當
時,奇數項都相等,偶數項都相等且
,即有
,因為數列
各項為正整數,且
,所以
或
或
或![]()
此時
或
;
②當
時,奇數項遞增,偶數項遞增,而
,隨著
的增大,存在
時,
,這樣與條件矛盾,故
不成立;
③當
時,奇數項遞減,偶數項遞減,而
,隨著
的增大,存在
時,
,這樣與條件矛盾,故
不成立;
綜上,
或
,即
.
科目:高中數學 來源: 題型:
【題目】已知動點
到直線
的距離比到定點
的距離大1.
(1)求動點
的軌跡
的方程.
(2)若
為直線
上一動點,過點
作曲線
的兩條切線
,
,切點為
,
,
為
的中點.
①求證:
軸;
②直線
是否恒過一定點?若是,求出這個定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的幾何體中,EA⊥平面ABCD,四邊形ABCD為等腰梯形,
,且
,AD=AE=1,∠ABC=60°,EF=
AC,且EF
AC.
![]()
(Ⅰ)證明:AB⊥CF;
(Ⅱ)求二面角B﹣EF﹣D的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
(
),點
在
的焦點
的右側,且
到
的準線的距離是
到
距離的3倍,經過點
的直線與拋物線
交于不同的
、
兩點,直線
與直線
交于點
,經過點
且與直線
垂直的直線
交
軸于點
.
(1)求拋物線
的方程和
的坐標;
(2)判斷直線
與直線
的位置關系,并說明理由;
(3)橢圓
的兩焦點為
、
,在橢圓
外的拋物線
上取一點
,若
、
的斜率分別為
、
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ln
+ax﹣1(a≠0).
(I)求函數f(x)的單調區間;
(Ⅱ)已知g(x)+xf(x)=﹣x,若函數g(x)有兩個極值點x1,x2(x1<x2),求證:g(x1)<0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左、右點分別為
點
在橢圓上,且![]()
(1)求橢圓
的方程;
(2)過點(1,0)作斜率為
的直線
交橢圓
于M、N兩點,若
求直線
的方程;
(3)點P、Q為橢圓上的兩個動點,
為坐標原點,若直線
的斜率之積為
求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲乙兩人分別投擲兩顆骰子與一顆骰子,設甲的兩顆骰子的點數分別為
與
,乙的骰子的點數為
,則擲出的點數滿足
的概率為________(用最簡分數表示).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com