【題目】已知拋物線
和點(diǎn)
,直線
與拋物線
交于不同兩點(diǎn)
,
,直線
與拋物線
交于另一點(diǎn)
.給出以下判斷:
①直線
與直線
的斜率乘積為
;
②
軸;
③以
為直徑的圓與拋物線準(zhǔn)線相切.
其中,所有正確判斷的序號(hào)是( )
A.①②③B.①②C.①③D.②③
【答案】B
【解析】
由題意,可設(shè)直線
的方程為
,利用韋達(dá)定理判斷第一個(gè)結(jié)論;將
代入拋物線
的方程可得,
,從而,
,進(jìn)而判斷第二個(gè)結(jié)論;設(shè)
為拋物線
的焦點(diǎn),以線段
為直徑的圓為
,則圓心
為線段
的中點(diǎn).設(shè)
,
到準(zhǔn)線的距離分別為
,
,
的半徑為
,點(diǎn)
到準(zhǔn)線的距離為
,顯然
,
,
三點(diǎn)不共線,進(jìn)而判斷第三個(gè)結(jié)論.
解:由題意,可設(shè)直線
的方程為
,
代入拋物線
的方程,有
.
設(shè)點(diǎn)
,
的坐標(biāo)分別為
,
,
則
,
.
所
.
則直線
與直線
的斜率乘積為
.所以①正確.
將
代入拋物線
的方程可得,
,從而,
,
根據(jù)拋物線的對(duì)稱性可知,
,
兩點(diǎn)關(guān)于
軸對(duì)稱,
所以直線
軸.所以②正確.
如圖,設(shè)
為拋物線
的焦點(diǎn),以線段
為直徑的圓為
,
則圓心
為線段
的中點(diǎn).設(shè)
,
到準(zhǔn)線的距離分別為
,
,
的半徑為
,點(diǎn)
到準(zhǔn)線的距離為
,顯然
,
,
三點(diǎn)不共線,
則
.所以③不正確.
![]()
故選:B.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲箱中裝有3個(gè)紅球,2個(gè)黑球,乙箱中裝有2個(gè)紅球,3個(gè)黑球,這些球除顏色外完全相同,某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),規(guī)定顧客購物1000元以上,可以參與抽獎(jiǎng)一次,設(shè)獎(jiǎng)規(guī)則如下:每次分別從以上兩個(gè)箱子中各隨機(jī)摸出2個(gè)球,共4個(gè)球,若摸出4個(gè)球都是紅球,則獲得一等獎(jiǎng),獎(jiǎng)金300元;摸出的球中有3個(gè)紅球,則獲得二等獎(jiǎng),獎(jiǎng)金200元;摸出的球中有2個(gè)紅球,則獲得三等獎(jiǎng),獎(jiǎng)金100元;其他情況不獲獎(jiǎng),每次摸球結(jié)束后將球放回原箱中.
(1)求在1次摸獎(jiǎng)中,獲得二等獎(jiǎng)的概率;
(2)若3人各參與摸獎(jiǎng)1次,求獲獎(jiǎng)人數(shù)X的數(shù)學(xué)期望
;
(3)若商場(chǎng)同時(shí)還舉行打9折促銷活動(dòng),顧客只能在兩項(xiàng)促銷活動(dòng)中任選一項(xiàng)參與.假若你購買了價(jià)值1200元的商品,那么你選擇參與哪一項(xiàng)活動(dòng)對(duì)你有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若S
是公差不為0的等差數(shù)列
的前
項(xiàng)和,且
成等比數(shù)列。
(1)求等比數(shù)列
的公比;
(2)若
,求
的通項(xiàng)公式;
(3)設(shè)
,
是數(shù)列
的前
項(xiàng)和,求使得
對(duì)所有
都成立的最小正整數(shù)
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】實(shí)驗(yàn)中學(xué)從高二級(jí)部中選拔一個(gè)班級(jí)代表學(xué)校參加“學(xué)習(xí)強(qiáng)國(guó)知識(shí)大賽”,經(jīng)過層層選拔,甲、乙兩個(gè)班級(jí)進(jìn)入最后決賽,規(guī)定回答1個(gè)相關(guān)問題做最后的評(píng)判選擇由哪個(gè)班級(jí)代表學(xué)校參加大賽.每個(gè)班級(jí)6名選手,現(xiàn)從每個(gè)班級(jí)6名選手中隨機(jī)抽取3人回答這個(gè)問題已知這6人中,甲班級(jí)有4人可以正確回答這道題目,而乙班級(jí)6人中能正確回答這道題目的概率每人均為
,甲、乙兩班級(jí)每個(gè)人對(duì)問題的回答都是相互獨(dú)立,互不影響的.
(1)求甲、乙兩個(gè)班級(jí)抽取的6人都能正確回答的概率;
(2)分別求甲、乙兩個(gè)班級(jí)能正確回答題目人數(shù)的期望
和方差
、
,并由此分析由哪個(gè)班級(jí)代表學(xué)校參加大賽更好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了讓稅收政策更好的為社會(huì)發(fā)展服務(wù),國(guó)家在修訂《中華人民共和國(guó)個(gè)人所得稅法》之后,發(fā)布了《個(gè)人所得稅專項(xiàng)附加扣除暫行辦法》,明確“專項(xiàng)附加扣除”就是子女教育、繼續(xù)教育大病醫(yī)療、住房貸款利息、住房租金贈(zèng)養(yǎng)老人等費(fèi)用,并公布了相應(yīng)的定額扣除標(biāo)準(zhǔn),決定自2019年1月1日起施行,某機(jī)關(guān)為了調(diào)查內(nèi)部職員對(duì)新個(gè)稅方案的滿意程度與年齡的關(guān)系,通過問卷調(diào)查,整理數(shù)據(jù)得如下2×2列聯(lián)表:
40歲及以下 | 40歲以上 | 合計(jì) | |
基本滿意 | 15 | 30 | 45 |
很滿意 | 25 | 10 | 35 |
合計(jì) | 40 | 40 | 80 |
(1)根據(jù)列聯(lián)表,能否有99%的把握認(rèn)為滿意程度與年齡有關(guān)?
(2)為了幫助年齡在40歲以下的未購房的8名員工解決實(shí)際困難,該企業(yè)擬員工貢獻(xiàn)積分
(單位:分)給予相應(yīng)的住房補(bǔ)貼
(單位:元),現(xiàn)有兩種補(bǔ)貼方案,方案甲:
;方案乙:
.已知這8名員工的貢獻(xiàn)積分為2分,3分,6分,7分,7分,11分,12分,12分,將采用方案甲比采用方案乙獲得更多補(bǔ)貼的員工記為“
類員工”.為了解員工對(duì)補(bǔ)貼方案的認(rèn)可度,現(xiàn)從這8名員工中隨機(jī)抽取4名進(jìn)行面談,求恰好抽到3名“
類員工”的概率。
附:
,其中
.
參考數(shù)據(jù):
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
為
的導(dǎo)數(shù),函數(shù)
在
處取得最小值.
(1)求證:
;
(2)若
時(shí),
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系
中,動(dòng)點(diǎn)
與兩定點(diǎn)
,
連線的斜率之積為
,記點(diǎn)
的軌跡為曲線
.
(1)求曲線
的方程;
(2)已知點(diǎn)
,過原點(diǎn)
且斜率為
的直線
與曲線
交于
兩點(diǎn)(點(diǎn)
在第一象限),求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國(guó)家文明城市評(píng)審委員會(huì)對(duì)甲、乙兩個(gè)城市是否能入圍“國(guó)家文明城市”進(jìn)行走訪調(diào)查,派出10人的調(diào)查組,先后到甲、乙兩個(gè)城市的街道、社區(qū)進(jìn)行問卷調(diào)查,然后打分(滿分100分),他們給出甲、乙兩個(gè)城市分?jǐn)?shù)的莖葉圖如圖所示:
![]()
(1)請(qǐng)你用統(tǒng)計(jì)學(xué)的知識(shí)分析哪個(gè)城市更應(yīng)該入圍“國(guó)家文明城市”,并說明理由;
(2)從甲、乙兩個(gè)城市的打分中各抽取2個(gè),在已知有大于80分的條件下,求抽到乙城市的分?jǐn)?shù)都小于80分的概率.
(參考數(shù)據(jù):
,
)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com