【題目】如圖所示,正方體
的棱長為1,線段
上有兩個動點
,且
,則下列結論中正確的是__________.
![]()
①
平面
;
②平面
平面
;
③三棱錐
的體積為定值;
④存在某個位置使得異面直線
與
成角
.
【答案】①②③④
【解析】![]()
由正方體ABCD﹣A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F,且EF=
,知:
在①中,由EF∥BD,且EF平面ABCD,BD平面ABCD,得EF∥平面ABCD,故①正確;
在②中,連接BD,由AC⊥BD,AC⊥DD1,可知AC⊥面BDD1B1,
而BE面BDD1B1,BF面BDD1B1,∴AC⊥平面BEF,
∵AC平面ACF,∴面ACF⊥平面BEF,故②正確;
在③中,三棱錐E﹣ABF的體積與三棱錐A﹣BEF的體積相等,
三棱錐A﹣BEF的底面積和高都是定值,故三棱錐E﹣ABF的體積為定值,故③正確;
在④中,令上底面中心為O,當E與D1重合時,此時點F與O重合,
則兩異面直線所成的角是∠OBC1,可求解∠OBC1=300,
故存在某個位置使得異面直線AE與BF成角30°,故④正確.
故答案為:①②③④.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐
的底面
是菱形,
,
平面
,
是
的中點.
![]()
(1)求證:平面
平面
;
(2)棱
上是否存在一點
,使得
平面
?若存在,確定
的位置并加以證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,“共享單車”的出現為市民“綠色出行”提供了極大的方便,某共享單車公司計劃在甲、乙兩座城市共投資240萬元,根據行業規定,每個城市至少要投資80萬元,由前期市場調研可知:甲城市收益
與投入
(單位:萬元)滿足
,乙城市收益
與投入
(單位:萬元)滿足
,設甲城市的投入為
(單位:萬元),兩個城市的總收益為
(單位:萬元).
(1)當投資甲城市128萬元時,求此時公司總收益;
⑵試問如何安排甲、乙兩個城市的投資,才能使公司總收益最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知非空集合A、B滿足以下四個條件:
①A∪B={1,2,3,4,5,6,7};②A∩B=;③A中的元素個數不是A中的元素;④B中的元素個數不是B中的元素.
若集合A含有2個元素,則滿足條件的A有個.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】假設你家訂了一份報紙,送報人可能在早上6點—8點之間把報紙送到你家,你每天離家去工作的時間在早上7點—9點之間.
問:離家前不能看到報紙(稱事件
)的概率是多少?(須有過程)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com