如圖,直線l與⊙O相切于點A,點P為直線l上一點,直線PO交⊙O于點C、B,點D在線段AP上,連結DB,且AD=DB.![]()
(1)判斷直線DB與⊙O的位置關系,并說明理由;
(2)若PB=BO,⊙O的半徑為4cm,求AC的長.
科目:高中數學 來源: 題型:解答題
如圖,AB是⊙O的直徑,C、E為⊙O上的點,CA平分∠BAE,CF⊥AB, F是垂足,CD⊥AE,交AE延長線于D.![]()
(I)求證:DC是⊙O的切線;
(Ⅱ)求證:AF.FB=DE.DA.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知:如右圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點D作AC的平行線DE,交BA的延長線于點E.求證:(1)△ABC≌△DCB (2)DE·DC=AE·BD.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,AB、CD是⊙O的兩條平行切線,B、D為切點,AC為⊙O的切線,切點為E.過A作AF⊥CD,F為垂足.![]()
(1)求證:四邊形ABDF是矩形;
(2)若AB=4,CD=9,求⊙O的半徑.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
選修4—1:幾何證明選講
如圖所示,已知PA是⊙O相切,A為切點,PBC為割線,弦CD//AP,AD、BC相交于 E點,F為CE上一點,且![]()
![]()
(1)求證:A、P、D、F四點共圓;
(2)若AE·ED=24,DE=EB=4,求PA的長。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖1,在△ABC中,點P為BC邊中點,直線a繞頂點A旋轉,若點B,P在直線a的異側,BM⊥直線a于點M.CN⊥直線a于點N,連接PM,PN.![]()
![]()
(1)延長MP交CN于點E(如圖2).
①求證:△BPM≌△CPE;
②求證:PM=PN;
(2)若直線a繞點A旋轉到圖3的位置時,點B,P在直線a的同側,其它條件不變,此時PM=PN還成立嗎?若成立,請給予證明;若不成立,請說明理由;
(3)若直線a繞點A旋轉到與BC邊平行的位置時,其它條件不變,請直接判斷四邊形MBCN的形狀及此時PM=PN還成立嗎?不必說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分10分)選修4—1:幾何證明選講
如圖,已知
,過頂點A的圓與邊BC切于BC的中點P,與邊AB、AC分別交于點M、N,且CN=2BM,點N平分AC。求證:AM=7BM。![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com