【題目】已知定義在實(shí)數(shù)集
上的奇函數(shù)
,且當(dāng)
時(shí),
.
(Ⅰ)求函數(shù)
在
上的解析式;
(Ⅱ)判斷
在
上的單調(diào)性;
(Ⅲ)當(dāng)
取何值時(shí),方程
在
上有實(shí)數(shù)解?
【答案】(Ⅰ)
;(Ⅱ)見解析;(Ⅲ)
或
或
.
【解析】試題分析:(Ⅰ)由
是
上的奇函數(shù),得
,且設(shè)
,則
,
即可得解;
(Ⅱ)設(shè)
, 則
,判斷正負(fù)即可下結(jié)論;
(Ⅲ)由函數(shù)單調(diào)性求得
在
的值域即可.
試題解析:
(Ⅰ)因?yàn)?/span>
是
上的奇函數(shù),
所以
,
設(shè)
,則
,
因?yàn)?/span>
,
所以
時(shí),
,
所以
.
(Ⅱ)證明:設(shè)
,
則
,
因?yàn)?/span>
,
所以
,
所以
,
所以
在
上為減函數(shù).
(Ⅲ)因?yàn)?/span>
在
上為減函數(shù),
所以
即
,
同理,
上時(shí),
,
又
,
所以當(dāng)
或
或
時(shí)方程
在
上有實(shí)數(shù)解.
點(diǎn)睛: 證明函數(shù)單調(diào)性的一般步驟:(1)取值:在定義域上任取
,并且
(或
);(2)作差:
,并將此式變形(要注意變形到能判斷整個(gè)式子符號為止);(3)定號:判斷
的正負(fù)(要注意說理的充分性),必要時(shí)要討論;(4)下結(jié)論:根據(jù)定義得出其單調(diào)性.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三國時(shí)期著名的數(shù)學(xué)家劉徽對推導(dǎo)特殊數(shù)列的求和公式很感興趣,創(chuàng)造并發(fā)展了許多算法,展現(xiàn)了聰明才智.他在《九章算術(shù)》“盈不足”章的第19題的注文中給出了一個(gè)特殊數(shù)列的求和公式.這個(gè)題的大意是:一匹良馬和一匹駑馬由長安出發(fā)至齊地,長安與齊地相距3000里(1里=500米),良馬第一天走193里,以后每天比前一天多走13里.駑馬第一天走97里,以后每天比前一天少走半里.良馬先到齊地后,馬上返回長安迎駑馬,問兩匹馬在第幾天相遇( )
A. 14天B. 15天C. 16天D. 17天
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)
是函數(shù)
的圖象的一個(gè)對稱中心,且點(diǎn)
到該圖象的對稱軸的距離的最小值為
.
①
的最小正周期是
;
②
的值域?yàn)?/span>
;
③
的初相
為
;
④
在
上單調(diào)遞增.
以上說法正確的個(gè)數(shù)是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱錐O﹣ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點(diǎn).
![]()
(1)求異面直線BE與AC所成角的余弦值;
(2)求直線BE和平面ABC的所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三角形內(nèi),我們將三條邊的中線的交點(diǎn)稱為三角形的重心,且重心到任一頂點(diǎn)的距離是到對邊中點(diǎn)距離的兩倍類比上述結(jié)論:在三棱錐中,我們將頂點(diǎn)與對面重心的連線段稱為三棱錐的“中線”,將三棱錐四條中線的交點(diǎn)稱為它的“重心”,則棱錐重心到頂點(diǎn)的距離是到對面重心距離的______倍![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙二人進(jìn)行定點(diǎn)投籃比賽,已知甲、乙兩人每次投進(jìn)的概率均為
,兩人各投一次稱為一輪投籃.
求乙在前3次投籃中,恰好投進(jìn)2個(gè)球的概率;
設(shè)前3輪投籃中,甲與乙進(jìn)球個(gè)數(shù)差的絕對值為隨機(jī)變量
,求
的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列條件解三角形,有兩解的有( )
A.已知a
,b=2,B=45°B.已知a=2,b
,A=45°
C.已知b=3,c
,C=60°D.已知a=2
,c=4,A=45°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下命題為假命題的是( )
A. “若m>0,則方程x2+x-m=0有實(shí)數(shù)根”的逆命題
B. “面積相等的三角形全等”的否命題
C. “若xy=1,則x,y互為倒數(shù)”的逆命題
D. “若A∪B=B,則AB”的逆否命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門經(jīng)常不定期地抽查產(chǎn)品進(jìn)行檢測,現(xiàn)在某條生產(chǎn)線上隨機(jī)抽取100個(gè)產(chǎn)品進(jìn)行相關(guān)數(shù)據(jù)的對比,并對每個(gè)產(chǎn)品進(jìn)行綜合評分(滿分100分),將每個(gè)產(chǎn)品所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80分及以上的產(chǎn)品為一等品.
![]()
(1)求圖中
的值;
(2)求綜合評分的中位數(shù);
(3)用樣本估計(jì)總體,以頻率作為概率,按分層抽樣的思想,先在該條生產(chǎn)線中隨機(jī)抽取5個(gè)產(chǎn)品,再從這5個(gè)產(chǎn)品中隨機(jī)抽取2個(gè)產(chǎn)品記錄有關(guān)數(shù)據(jù),求這2個(gè)產(chǎn)品中至多有一個(gè)一等品的概率.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com