【題目】已知函數f(x)的定義域為(﹣∞,0)∪(0,+∞),f(x)是奇函數,且當x>0時,f(x)=x2﹣x+a,若函數g(x)=f(x)﹣x的零點恰有兩個,則實數a的取值范圍是( )
A.a<0
B.a≤0
C.a≤1
D.a≤0或a=1
【答案】D
【解析】解:因為f(x)是奇函數,所以g(x)=f(x)﹣x也是奇函數, 所以要使函數g(x)=f(x)﹣x的零點恰有兩個,
則只需要當x>0時,函數g(x)=f(x)﹣x的零點恰有一個即可.
由g(x)=f(x)﹣x=0得,g(x)=x2﹣x+a﹣x=x2﹣2x+a=0,
若△=0,即4﹣4a=0,解得a=1.
若△>0,要使當x>0時,函數g(x)只有一個零點,則g(0)=a≤0,
所以此時
,解得a≤0.
綜上a≤0或a=1.
故選D.
【考點精析】通過靈活運用函數的零點,掌握函數的零點就是方程的實數根,亦即函數的圖象與軸交點的橫坐標.即:方程有實數根,函數的圖象與坐標軸有交點,函數有零點即可以解答此題.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐
中,平面
平面
,且
,
.四邊形
滿足
,
,
.
為側棱
的中點,
為側棱
上的任意一點.
![]()
(1)若
為
的中點,求證: 面
平面
;
(2)是否存在點
,使得直線
與平面
垂直? 若存在,寫出證明過程并求出線段
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數y=f(x)的定義域為D,若對于任意的x1 , x2∈D,當x1+x2=2a時,恒有f(x1)+f(x2)=2b,則稱點(a,b)為函數y=f(x)圖象的對稱中心.研究函數f(x)=x3+sinx+2的某一個對稱中心,并利用對稱中心的上述定義,可得到
…
= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和Sn滿足:Sn=
(an﹣1)(a為常數,且a≠0,a≠1);
(1)求{an}的通項公式;
(2)設bn=
+1,若數列{bn}為等比數列,求a的值;
(3)若數列{bn}是(2)中的等比數列,數列cn=(n﹣1)bn , 求數列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=4sinθ.
(1)求曲線C的直角坐標方程;
(2)若曲線C1:
(α為參數)與曲線C所表示的圖形都相切,求r的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線
的參數方程為
(
為參數),在同一平面直角坐標系中,將曲線
上的點按坐標變換
得到曲線
.(1)求曲線
的普通方程;(2)若點
在曲線
上,點
,當點
在曲線
上運動時,求
中點
的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x+2|﹣2|x﹣1|.
(1)解不等式f(x)≥﹣2;
(2)對任意x∈R,都有f(x)≤x﹣a成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知各項為正的數列{an}是等比數列,a1=2,a5=32,數列{bn}滿足:對于任意n∈N* , 有a1b1+a2b2+…+anbn=(n﹣1)2n+1+2.
(1)求數列{an}的通項公式;
(2)令f(n)=a2+a4+…+a2n , 求
的值;
(3)求數列{bn}通項公式,若在數列{an}的任意相鄰兩項ak與ak+1之間插入bk(k∈N*)后,得到一個新的數列{cn},求數列{cn}的前100項之和T100 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com