【題目】已知函數
對一切實數
都有
成立,且
.
(1)求
的值;
(2)求
的解析式;
(3)已知
,設
:當
時,不等式
恒成立;Q:當
時,
是單調函數。如果滿足
成立的
的集合記為
,滿足Q成立的
的集合記為
,求A∩(CRB)(
為全集).
【答案】(1)
;(2)
;(3)
.
【解析】試題分析:(1)對抽象函數滿足的函數值關系的理解和把握是解決該問題的關鍵,對自變量適當的賦值可以解決該問題,結合已知條件可以賦
求出
;(2)在(1)基礎上賦值
可以實現求解
的解析式的問題;(3)利用(2)中求得的函數的解析式,結合恒成立問題的求解策略,即轉化為相應的二次函數最值問題求出集合
,利用二次函數的單調性求解策略求出集合
.
試題解析:(1)令x=﹣1,y=1,則由已知f(0)﹣f(1)=﹣1(﹣1+2+1)
∴f(0)=﹣2
(2)令y=0,則f(x)﹣f(0)=x(x+1)
又∵f(0)=﹣2,∴f(x)=x2+x﹣2
(3)不等式f(x)+3<2x+a即x2+x﹣2+3<2x+a
也就是x2﹣x+1<a.由于當
時,
,
又x2﹣x+1=
恒成立,
故A={a|a≥1},g(x)=x2+x﹣2﹣ax=x2+(1﹣a)x﹣2 對稱軸x=
,
又g(x)在[﹣2,2]上是單調函數,故有
,或
,
∴B={a|a≤﹣3,或a≥5},CRB={a|﹣3<a<5},∴A∩CRB={a|1≤a<5}.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
極坐標系的極點為直角坐標系
的原點,極軸為
軸的正半軸,兩種坐標系中的長度單位相同,已知曲線
的極坐標方程為
.
(1)求
的直角坐標方程;
(2)直線
(
為參數)與曲線
交于
兩點,與
軸交于
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《中華人民共和國個人所得稅》規定,公民月工資、薪金所得不超過3500元的部分不納稅,超過3500元的部分為全月納稅所得額,此項稅款按下表分段累計計算:
![]()
已知張先生的月工資、薪金所得為10000元,問他當月應繳納多少個人所得稅?
設王先生的月工資、薪金所得為
元,當月應繳納個人所得稅為
元,寫出
與
的函數關系式;
(3)已知王先生一月份應繳納個人所得稅為303元,那么他當月的個工資、薪金所得為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖(1)所示,E為矩形ABCD的邊AD上一點,動點P、Q同時從點B出發,點P以1cm/秒的速度沿折線BE-ED-DC運動到點C時停止,點Q以2cm/秒的速度沿BC運動到點C時停止.設P、Q同時出發t秒時,△BPQ的面積為ycm2.已知y與t的函數關系圖象如圖(2)(其中曲線OG為拋物線的一部分,其余各部分均為線段),則下列結論:①
;②當
時,
;③
;④當
秒時,
∽
;⑤當
的面積為
時,時間
的值是
或
;其中正確的結論是( )
![]()
A. ①⑤ B. ②⑤ C. ②③ D. ②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知如圖,圓
、橢圓
均經過點M
,圓
的圓心為
,橢圓
的兩焦點分別為
.
![]()
(Ⅰ)分別求圓
和橢圓
的標準方程;
(Ⅱ)過
作直線
與圓
交于
、
兩點,試探究
是否為定值?若是定值,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高職院校進行自主招生文化素質考試,考試內容為語文、數學、英語三科,總分為200分.現從上線的考生中隨機抽取20人,將其成績用莖葉圖記錄如下:
男 | 女 | |||||||||||
15 | 6 | |||||||||||
5 | 4 | 16 | 3 | 5 | 8 | |||||||
8 | 2 | 17 | 2 | 3 | 6 | 8 | 8 | 8 | ||||
6 | 5 | 18 | 5 | 7 | ||||||||
19 | 2 | 3 | ||||||||||
(Ⅰ)計算上線考生中抽取的男生成績的方差
;(結果精確到小數點后一位)
(Ⅱ)從上述莖葉圖180分以上的考生中任選2人作為考生代表出席座談會,求所選考生恰為一男一女的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)滿足f(logax)=
·(x-
)(其中a>0且a≠1).
(1)求函數f(x)的解析式,并判斷其奇偶性和單調性;
(2)當x∈(-∞,2)時,f(x)-4的值恒為負數,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】共享單車是城市慢行系統的一種模式創新,對于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產新樣式的單車,已知生產新樣式單車的固定成本為20000元,每生產一件新樣式單車需要增加投入100元.根據初步測算,自行車廠的總收益(單位:元)滿足分段函數
,其中
是新樣式單車的月產量(單位:件),利潤
總收益
總成本.
(1)試將自行車廠的利潤
元表示為月產量
的函數;
(2)當月產量為多少件時自行車廠的利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com