【題目】選修4-4:坐標系與參數(shù)方程
極坐標系的極點為直角坐標系
的原點,極軸為
軸的正半軸,兩種坐標系中的長度單位相同,已知曲線
的極坐標方程為
.
(1)求
的直角坐標方程;
(2)直線
(
為參數(shù))與曲線
交于
兩點,與
軸交于
,求
.
【答案】(Ⅰ) (x-1)2+(y-1)2=2. (Ⅱ)|EA|+|EB|=![]()
【解析】試題分析:(1)由極坐標和直角坐標之間的轉(zhuǎn)換公式,即可求出結(jié)果;(2)將
的參數(shù)方程代入曲線C的直角坐標方程,化簡得
,點E對應(yīng)的參數(shù)
,設(shè)點A,B對應(yīng)的參數(shù)分別為
,則
,
,再根據(jù)
即可求出結(jié)果.
試題解析:(1)由
得
,得直角坐標方程為
,即
;
(2)將
的參數(shù)方程代入曲線C的直角坐標方程,化簡得
,點E對應(yīng)的參數(shù)
,設(shè)點A,B對應(yīng)的參數(shù)分別為
,則
,
,所以
.
科目:高中數(shù)學 來源: 題型:
【題目】【2014天津,文19】已知函數(shù)![]()
(1) 求
的單調(diào)區(qū)間和極值;
(2)若對于任意的
,都存在
,使得
,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2016·桂林高二檢測)如圖所示,在四邊形ABCD中,AB=AD=CD=1,BD=
,BD⊥CD,將四邊形ABCD沿對角線BD折成四面體A′-BCD,使平面A′BD⊥平面BCD,則下列結(jié)論正確的是________.
![]()
(1)A′C⊥BD.(2)∠BA′C=90°.
(3)CA′與平面A′BD所成的角為30°.
(4)四面體A′-BCD的體積為
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)過原點的直線與橢圓
交于
兩點,點
為橢圓上不同于
的一點,直線
的斜率均存在,且直線
的斜率之積為
.
(1)求橢圓
的離心率;
(2)設(shè)
分別為橢圓的左、右焦點,斜率為
的直線
經(jīng)過橢圓的右焦點,且與橢圓交于
兩點.若點
在以
為直徑的圓內(nèi)部,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,求|a+b|和a+b與c的夾角;
(2)設(shè)O為△ABC的外心,已知AB=3,AC=4,非零實數(shù)x,y滿足
=x
+y
,且x+2y=1,求cos ∠BAC的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著網(wǎng)絡(luò)的發(fā)展,人們可以在網(wǎng)絡(luò)上購物、玩游戲、聊天、導(dǎo)航等,所以人們對上網(wǎng)流量的需求越來越大。某電信運營商推出一款新的“流量包”套餐.為了調(diào)查不同年齡的人是否愿意選擇此款“流量包”套餐,隨機抽取50個用戶按年齡分組進行訪談,統(tǒng)計結(jié)果如下表.
組號 | 年齡 | 訪談人數(shù) | 愿意使用 |
1 | [20,30) | 5 | 5 |
2 | [30.40) | 10 | 10 |
3 | [40.50) | 15 | 12 |
4 | [50.60) | 14 | 8 |
5 | [60,70) | 6 | 2 |
(1)若在第2、3、4組愿意選擇此款“流量包”套餐的人中,用分層抽樣的方法抽取15人,則各組應(yīng)分別抽取多少人?
(2)若從第5組的被調(diào)查者訪談人中隨機選取2人進行追蹤調(diào)查,求2人中至少有1人愿意選擇此款“流量包”套餐的概率.
(3)按以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷以50歲為分界點,能否在犯錯誤不超過1%的前提下認為是否愿意選擇此款“流量包”套餐與人的年齡有關(guān);