【題目】如圖(1)所示,E為矩形ABCD的邊AD上一點,動點P、Q同時從點B出發,點P以1cm/秒的速度沿折線BE-ED-DC運動到點C時停止,點Q以2cm/秒的速度沿BC運動到點C時停止.設P、Q同時出發t秒時,△BPQ的面積為ycm2.已知y與t的函數關系圖象如圖(2)(其中曲線OG為拋物線的一部分,其余各部分均為線段),則下列結論:①
;②當
時,
;③
;④當
秒時,
∽
;⑤當
的面積為
時,時間
的值是
或
;其中正確的結論是( )
![]()
A. ①⑤ B. ②⑤ C. ②③ D. ②④
【答案】D
【解析】根據圖(2)可得,
![]()
當點P到達點E時點Q到達點C,
∵點P、Q的運動的速度分別是1cm/秒、2cm/秒
∴BC=BE=10,
∴AD=BC=10.
又∵從M到N的變化是4,
∴ED=4,
∴AE=ADED=104=6.
∵AD∥BC,
∴∠EBQ=∠AEB,
∴
,
故③錯誤;
如圖1,過點P作PF⊥BC于點F,
![]()
∵AD∥BC,
∴∠EBQ=∠AEB,
∴
,
∴PF=PBsin∠EBQ=
t,
∴當0<t5時,
,
故①正確,
如圖3,當t=6秒時,點P在BE上,點Q靜止于點C處。
![]()
在△ABE與△PQB中,
AE=BP,∠EBQ=∠AEB,BE=BC
∴△ABE≌△PQB(SAS).
故②正確;
如圖4,
![]()
當
時,點P在CD上,
∴
,
,
∴
,
∴
,
∵∠A=∠Q=90°,
∴△ABE∽△QBP,
故④正確。
由②知,
,
當y=4時,
,
從而
,
故⑤錯誤.
本題選擇D選項.
科目:高中數學 來源: 題型:
【題目】已知某中學高三文科班學生共有800人參加了數學與地理的水平測試,現從中隨機抽取100人的數學與地理的水平測試成績如下表:
![]()
成績分為優秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數學成績,例如:表中數學成績為良好的共有
.
(Ⅰ)若在該樣本中,數學成績優秀率是30%,求
的值;
(Ⅱ)已知
,求數學成績為優秀的人數比及格的人數少的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,求|a+b|和a+b與c的夾角;
(2)設O為△ABC的外心,已知AB=3,AC=4,非零實數x,y滿足
=x
+y
,且x+2y=1,求cos ∠BAC的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某漁場有一邊長為20m的正三角形湖面ABC(如圖所示),計劃筑一條筆直的堤壩DE將水面分成面積相等的兩部分,以便進行兩類水產品養殖試驗(D在AB上,E在AC上).
![]()
(1)為了節約開支,堤壩應盡可能短,請問該如何設計?堤壩最短為多少?
(2)將DE設計為景觀路線,堤壩應盡可能長,請問又該如何設計?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
對一切實數
都有
成立,且
.
(1)求
的值;
(2)求
的解析式;
(3)已知
,設
:當
時,不等式
恒成立;Q:當
時,
是單調函數。如果滿足
成立的
的集合記為
,滿足Q成立的
的集合記為
,求A∩(CRB)(
為全集).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=
ax3-bx2+(2-b)x+1在x=x1處取得極大值,在x=x2處取得極小值,且0<x1<1<x2<2.
(1)證明:a>0;
(2)若z=a+2b,求z的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商品的進價為每件
元,售價為每件
元,每個月可賣出
件;如果每件商品在該售價的基礎上每上漲
元,則每個月少賣
件(每件售價不能高于
元).設每件商品的售價上漲
元(
為正整數),每個月的銷售利潤為
元.
(1)求
與
的函數的函數關系式并直接寫出自變量
的取值范圍;
(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過點
作拋物線
的兩條切線, 切點分別為
,
.
(1) 證明:
為定值;
(2) 記△
的外接圓的圓心為點
, 點
是拋物線
的焦點, 對任意實數
, 試判斷以
為直徑的圓是否恒過點
? 并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com