【題目】在菱形
中,
,
為線段
的中點(如圖1).將
沿
折起到
的位置,使得平面
平面
,
為線段
的中點(如圖2).
![]()
(Ⅰ)求證:
;
(Ⅱ)求證:
平面
;
(Ⅲ)當四棱錐
的體積為
時,求
的值.
【答案】(Ⅰ)見解析. (Ⅱ)見解析. (Ⅲ)
.
【解析】
(Ⅰ)證明OD'⊥AO. 推出OD'⊥平面ABCO. 然后證明OD'⊥BC.(Ⅱ)取P為線段AD'的中點,連接OP,PM;證明四邊形OCMP為平行四邊形,然后證明CM∥平面AOD';(Ⅲ)說明OD'是四棱錐D'﹣ABCO的高.通過體積公式求解即可.
(Ⅰ)證明:因為在菱形
中,
,
為線段
的中點,
所以
.
因為平面
平面
平面
平面
,
平面
,
所以
平面
.
因為
平面
,
所以
.
(Ⅱ)證明:如圖,取
為線段
的中點,連接OP,PM;
因為在
中,
,
分別是線段
,
的中點,
所以
,
.
因為
是線段
的中點,菱形
中,
,
,
所以
.
所以
,
.
所以
,
.
所以四邊形
為平行四邊形,
所以
,
因為
平面
,
平面
,
所以
平面
;
![]()
(Ⅲ)由(Ⅰ)知
平面
.
所以
是四棱錐
的高,又S=
,
因為
,
所以
.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,四邊形ABCD是菱形,
,BD=2.
![]()
(1)若點E,F分別為線段PD,BC上的中點,求證:EF∥平面PAB;
(2)若平面PBD⊥平面ABCD,且PD⊥PB,PD=PB,求平面PAB與平面PBC所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系
中,點
在拋物線
:
上,直線
:
與拋物線
交于
,
兩點,且直線
,
的斜率之和為-1.
![]()
(1)求
和
的值;
(2)若
,設直線
與
軸交于
點,延長
與拋物線
交于點
,拋物線
在點
處的切線為
,記直線
,
與
軸圍成的三角形面積為
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平行四邊形ABCD中,AB=1,AD
,且∠BAD=45°,以BD為折線,把△ABD折起,使AB⊥DC,連接AC,得到三棱錐A﹣BCD.
![]()
(1)求證:平面ABD⊥平面BCD;
(2)求二面角B﹣AC﹣D的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,AB是圓O的直徑,點C是圓O上異于A,B的點,直線PC⊥平面ABC,E,F分別是PA,PC的中點.
(1)記平面BEF與平面ABC的交線為l,試判斷直線l與平面PAC的位置關系,并加以證明;
(2)設(1)中的直線l與圓O的另一個交點為D,且點Q滿足
.記直線PQ與平面ABC所成的角為θ,異面直線PQ與EF所成的角為α,二面角E﹣l﹣C的大小為β.求證:sinθ=sinαsinβ.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知銳角△ABC中,角A,B,C的對邊分別為a,b,c,b+c=10,a=
,5bsinAcosC+5csinAcosB=3a.
(1)求A的余弦值;
(2)求b和c.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據報道,全國很多省市將英語考試作為高考改革的重點,一時間“英語考試該如何改革”引起廣泛關注,為了解某地區學生和包括老師、家長在內的社會人士對高考英語改革的看法,某媒體在該地區選擇了3 000人進行調查,就“是否取消英語聽力”問題進行了問卷調查統計,結果如下表:
態度 | |||
調查人群 | 應該取消 | 應該保留 | 無所謂 |
在校學生 | 2100人 | 120人 | y人 |
社會人士 | 500人 | x人 | z人 |
已知在全體樣本中隨機抽取1人,抽到持“應該保留”態度的人的概率為0.06.
(1)現用分層抽樣的方法在所有參與調查的人中抽取300人進行問卷訪談,問應在持“無所謂”態度的人中抽取多少人?
(2)在持“應該保留”態度的人中,用分層抽樣的方法抽取6人,然后從這6人中隨機抽取2人,求這2人中恰好有1個人為在校學生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD是邊長為3的菱形,∠ABC=60°.PA⊥面ABCD,且PA=3.F在棱PA上,且AF=1,E在棱PD上.
![]()
(Ⅰ)若CE∥面BDF,求PE:ED的值;
(Ⅱ)求二面角B-DF-A的大。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com