【題目】已知銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,b+c=10,a=
,5bsinAcosC+5csinAcosB=3a.
(1)求A的余弦值;
(2)求b和c.
【答案】(1)
;(2)b=c=5
【解析】
(1)把條件5bsinAcosC+5csinAcosB=3a中的邊化為角,可求A的正弦值,結(jié)合平方關(guān)系可得A的余弦值;
(2)利用余弦定理可求.
(1)∵5bsinAcosC+5csinAcosB=3a,
∴由正弦定理可得:5sinBsinAcosC+5sinCsinAcosB=3sinA,
∵sinA≠0,∴5sinBcosC+5sinCcosB=3,可得:sin(B+C)=
,
∵B+C=π
A,∴sinA=
,∵A∈(0,
),∴cosA=
=
;
(2)∵a2=b2+c2
2bccosA=(b+c)2
2bc(1+cosA),又∵b+c=10,a=
,
∴解得:bc=25,∴解得:b=c=5.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校從參加高二年級(jí)期末考試的學(xué)生中抽出一些學(xué)生,并統(tǒng)計(jì)了他們的數(shù)學(xué)成績(jī)(成績(jī)均為整數(shù)且滿(mǎn)分為100分),所得數(shù)據(jù)整理后,列出了如下頻率分布表.
分組 | 頻數(shù) | 頻率 |
[40,50) | A | 0.04 |
[50,60) | 4 | 0.08 |
[60,70) | 20 | 0.40 |
[70,80) | 15 | 0.30 |
[80,90) | 7 | B |
[90,100] | 2 | 0.04 |
合計(jì) | C | 1 |
![]()
(1)在給出的樣本頻率分布表中,求A,B,C的值;
(2)補(bǔ)全頻率分布直方圖,并利用它估計(jì)全體高二年級(jí)學(xué)生期末數(shù)學(xué)成績(jī)的眾數(shù)、中位數(shù);
(3)現(xiàn)從分?jǐn)?shù)在[80,90),[90,100]的9名同學(xué)中隨機(jī)抽取兩名同學(xué),求被抽取的兩名學(xué)生分?jǐn)?shù)均不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
,(其中
是自然對(duì)數(shù)的底數(shù)).
(1)若
,求函數(shù)
在
上的最大值.
(2)若
,關(guān)于x的方程
有且僅有一個(gè)根,求實(shí)數(shù)k的取值范圍.
(3)若對(duì)任意的
、
,
,不等式
都成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
是定義在
上的奇函數(shù),且在區(qū)間
上單調(diào)遞減,
.設(shè)
,則滿(mǎn)足
的
的取值范圍是
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形
中,
,
為線段
的中點(diǎn)(如圖1).將
沿
折起到
的位置,使得平面
平面
,
為線段
的中點(diǎn)(如圖2).
![]()
(Ⅰ)求證:
;
(Ⅱ)求證:
平面
;
(Ⅲ)當(dāng)四棱錐
的體積為
時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于莖葉圖的說(shuō)法,結(jié)論錯(cuò)誤的一個(gè)是( )
![]()
A. 甲的極差是29 B. 甲的中位數(shù)是25
C. 乙的眾數(shù)是21 D. 甲的平均數(shù)比乙的大
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中,
,沿對(duì)角線AC將三角形ADC折起,得到四面體
,四面體
外接球表面積為
,當(dāng)四面體
的體積取最大值時(shí),四面體
的表面積為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中國(guó)詩(shī)詞大會(huì)》是央視推出的一檔以“賞中華詩(shī)詞,尋文化基因,品生活之美”為宗旨的大型文化類(lèi)競(jìng)賽節(jié)目,邀請(qǐng)全國(guó)各個(gè)年齡段、各個(gè)領(lǐng)域的詩(shī)詞愛(ài)好者共同參與詩(shī)詞知識(shí)比拼!鞍偃藞F(tuán)”由一百多位來(lái)自全國(guó)各地的選手組成,成員上至古稀老人,下至垂髫小兒,人數(shù)按照年齡分組統(tǒng)計(jì)如下表:
分組(年齡) |
|
|
|
頻數(shù)(人) |
|
|
|
(1)用分層抽樣的方法從“百人團(tuán)”中抽取
人參加挑戰(zhàn),求從這三個(gè)不同年齡組中分別抽取的挑戰(zhàn)者的人數(shù);
(2)在(1)中抽出的
人中,任選
人參加一對(duì)一的對(duì)抗比賽,求這
人來(lái)自同一年齡組的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形ABCD中,
,
,
,
,E為AB的中點(diǎn).將
沿CE折起,使點(diǎn)B到達(dá)點(diǎn)F的位置,且平面CEF與平面ADCE所成的二面角為
.
![]()
(1)求證:平面
平面AEF;
(2)求直線DF與平面CEF所成角的正弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com