【題目】如圖,某市建有貫穿東西和南北的兩條垂直公路
,
,在它們交叉路口點(diǎn)
處的東北方向建有一個荷花池,荷花池的外圍是一條環(huán)形公路,荷花池中的固定觀景臺
位于兩條垂直公路的角平分線
上,
與環(huán)形公路的交點(diǎn)記作
.游客游覽荷花池時,需沿公路
先到達(dá)環(huán)形公路
處.為了分流游客,方便游客游覽荷花池,計(jì)劃從靠近公路
,
的環(huán)形公路上選
,
兩處(
,
關(guān)于直線
對稱)修建直達(dá)觀景臺
的玻璃棧道
,
.以
,
所在的直線為
,
軸建立平面直角坐標(biāo)系
,靠近公路
,
的環(huán)形公路可用曲線
近似表示,曲線
符合函數(shù)
.
![]()
(1)若
百米,點(diǎn)
到
的垂直距離為1百米,求玻璃棧道
的總長度;
(2)若要使得玻璃棧道
的總長度最小為
百米,求觀景臺
的位置.
【答案】(1)
百米.(2)![]()
【解析】
(1)由
百米可得
,點(diǎn)
到
的垂直距離為1百米可得
,用平面兩點(diǎn)間的距離公式可求解答案.
(2)根據(jù)題意即
的最小值為
,設(shè)
,
,則
,然后換元求出最值,解出
的值.
解:(1)在平面直角坐標(biāo)系
中,設(shè)定點(diǎn)
,
因?yàn)?/span>
,所以
,解得
,即點(diǎn)
.
因?yàn)辄c(diǎn)
到
的垂直距離為1百米,所以點(diǎn)
;
所以
,
又因?yàn)?/span>
,
關(guān)于直線
對稱,點(diǎn)
在直線
上,
所以
.即
.
所以玻璃棧道
的總長度是
百米.
(2)在平面直角坐標(biāo)系
中,
,設(shè)定點(diǎn)
,
動點(diǎn)
,因?yàn)?/span>
,
關(guān)于直線
對稱,
點(diǎn)
在直線
上,所以
.
,則
,
令
,則
,
函數(shù)
的導(dǎo)數(shù)
,
當(dāng)
時,
,
所以
在
上單調(diào)減,所以![]()
函數(shù)
,
圖象對稱軸是
,
當(dāng)
時,
在區(qū)間
上單調(diào)遞增,無最小值;
當(dāng)
時,
在
上單調(diào)遞減,在
上單調(diào)遞增,
即
在
時有最小值
,
由題意
,因?yàn)?/span>
,所以
.
所以若要使得玻璃棧道
總長度最小為
百米,觀景平臺
的坐標(biāo)是
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“隨機(jī)模擬方法”計(jì)算曲線
與直線
所圍成的曲邊三角形的面積時,用計(jì)算機(jī)分別產(chǎn)生了10個在區(qū)間[1,e]上的均勻隨機(jī)數(shù)xi和10個在區(qū)間[0,1]上的均勻隨機(jī)數(shù)![]()
,其數(shù)據(jù)如下表的前兩行.
x | 2.50 | 1.01 | 1.90 | 1.22 | 2.52 | 2.17 | 1.89 | 1.96 | 1.36 | 2.22 |
y | 0.84 | 0.25 | 0.98 | 0.15 | 0.01 | 0.60 | 0.59 | 0.88 | 0.84 | 0.10 |
lnx | 0.90 | 0.01 | 0.64 | 0.20 | 0.92 | 0.77 | 0.64 | 0.67 | 0.31 | 0.80 |
由此可得這個曲邊三角形面積的一個近似值為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年,新冠狀肺炎疫情牽動每一個中國人的心,危難時刻眾志成城,共克時艱,為疫區(qū)助力.福建省漳州市東山縣共101個海鮮商家及個人為緩解武漢物質(zhì)壓力,募捐價值百萬的海鮮輸送武漢.東山島,別稱陵島,形似蝴蝶亦稱蝶島,隸屬于福建省漳州市東山縣,是福建省第二大島,中國第七大島,介于廈門市和廣東省汕頭之間,東南是著名的閩南漁場和粵東漁場交匯處,因地理位置發(fā)展海產(chǎn)品養(yǎng)殖業(yè)具有得天獨(dú)厚的優(yōu)勢.根據(jù)養(yǎng)殖規(guī)模與以往的養(yǎng)殖經(jīng)驗(yàn),某海鮮商家的海產(chǎn)品每只質(zhì)量(克)在正常環(huán)境下服從正態(tài)分布
.
(1)隨機(jī)購買10只該商家的海產(chǎn)品,求至少買到一只質(zhì)量小于265克該海產(chǎn)品的概率;
(2)2020年該商家考慮增加先進(jìn)養(yǎng)殖技術(shù)投入,該商家欲預(yù)測先進(jìn)養(yǎng)殖技術(shù)投入為49千元時的年收益增量.現(xiàn)用以往的先進(jìn)養(yǎng)殖技術(shù)投入
(千元)與年收益增量
(千元).
的數(shù)據(jù)繪制散點(diǎn)圖,由散點(diǎn)圖的樣本點(diǎn)分布,可以認(rèn)為樣本點(diǎn)集中在曲線
的附近,且![]()
![]()
![]()
![]()
,![]()
,其中![]()
.根據(jù)所給的統(tǒng)計(jì)量,求y關(guān)于x的回歸方程,并預(yù)測先進(jìn)養(yǎng)殖技術(shù)投入為49千元時的年收益增量.
附:若隨機(jī)變量
,則![]()
;
對于一組數(shù)據(jù)![]()
![]()
![]()
,其回歸線
的斜率和截距的最小二乘估計(jì)分別為![]()
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)人民法院每年要審理大量案件,去年審理的四類案件情況如表所示:
編號 | 項(xiàng)目 | 收案(件) | 結(jié)案(件) | |
判決(件) | ||||
1 | 刑事案件 | 2400 | 2400 | 2400 |
2 | 婚姻家庭、繼承糾紛案件 | 3000 | 2900 | 1200 |
3 | 權(quán)屬、侵權(quán)糾紛案件 | 4100 | 4000 | 2000 |
4 | 合同糾紛案件 | 14000 | 13000 | n |
其中結(jié)案包括:法庭調(diào)解案件、撤訴案件、判決案件等.根據(jù)以上數(shù)據(jù),回答下列問題.
(Ⅰ)在編號為1、2、3的收案案件中隨機(jī)取1件,求該件是結(jié)案案件的概率;
(Ⅱ)在編號為2的結(jié)案案件中隨機(jī)取1件,求該件是判決案件的概率;
(Ⅲ)在編號為1、2、3的三類案件中,判決案件數(shù)的平均數(shù)為
,方差為S12,如果表中n
,表中全部(4類)案件的判決案件數(shù)的方差為S22,試判斷S12與S22的大小關(guān)系,并寫出你的結(jié)論(結(jié)論不要求證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三角形ABE與菱形ABCD所在的平面互相垂直,
,
,M是AB的中點(diǎn),N是CE的中點(diǎn).
![]()
(1)求證:
;
(2)求證:
平面ADE;
(3)求點(diǎn)A到平面BCE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一批用于手電筒的電池,每節(jié)電池的壽命服從正態(tài)分布
(壽命單位:小時).考慮到生產(chǎn)成本,電池使用壽命在
內(nèi)是合格產(chǎn)品.
(1)求一節(jié)電池是合格產(chǎn)品的概率(結(jié)果四舍五入,保留一位小數(shù));
(2)根據(jù)(1)中的數(shù)據(jù)結(jié)果,若質(zhì)檢部門檢查4節(jié)電池,記抽查電池合格的數(shù)量為
,求隨機(jī)變量
的分布列、數(shù)學(xué)期望及方差.
附:若隨機(jī)變量
服從正態(tài)分布
,則
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形
和矩形
所在平面垂直,其中
為棱
的中點(diǎn),
為
的中點(diǎn).
![]()
(1)求證:
;
(2)若點(diǎn)
到平面
的距離是
,求多面體
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(1)求函數(shù)
的極值點(diǎn);
(2)當(dāng)
時,當(dāng)函數(shù)
恰有三個不同的零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com