【題目】若函數
滿足:
,則稱
為“
函數”.
(1)試判斷
是否為“
函數”,并說明理由;
(2)若
為“
函數”且
,
(ⅰ)求證:
的零點在
上;
(ii)求證:對任意
,存在
,使
在
上恒成立.
科目:高中數學 來源: 題型:
【題目】某加工廠用某原料由車間加工出 產品,由乙車間加工出 產品.甲車間加工一箱原料需耗費工時10小時可加工出7千克 產品,每千克 產品獲利40元.乙車間加工一箱原料需耗費工時6小時可加工出4千克 產品,每千克 產品獲利50元.甲、乙兩車間每天共能完成至多70箱原料的加工,每天甲、乙車間耗費工時總和不得超過480小時,甲、乙兩車間每天獲利最大的生產計劃為( )
A. 甲車間加工原料10箱,乙車間加工原料60箱
B. 甲車間加工原料15箱,乙車間加工原料55箱
C. 甲車間加工原料18箱,乙車間加工原料50箱
D. 甲車間加工原料40箱,乙車間加工原料30箱
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
.
(1)證明函數
在
上是減函數,
上是增函數;
(2)若方程
有且只有一個實數根,判斷函數
的奇偶性;
(3)在(2)的條件下探求方程
的根的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若pVq是假命題,則( )
A. p,q至少有一個是假命題 B. p,q 均為假命題
C. p,q中恰有一個是假命題 D. p,q至少有一個是真命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數
的圖象過點
,對任意
滿足
,且最小值是
.
(1)求
的解析式;
(2)設函數
,其中
,求
在區間
上的最小值
;
(3)若在區間
上,函數
的圖象恒在函數
的圖象上方,試確定實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等腰三角形的周長是18,底邊長y是一腰長x的函數,則( )
A.y=9-x(0<x≤9)
B.y=9-x(0<x<9)
C.y=18-2x(4.5≤x≤9)
D.y=18-2x(4.5<x<9)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某小組有3名男生和2名女生,從中任選2名學生參加演講比賽,那么下列對立的兩個事件是( )
A. “至少1名男生”與“至少有1名是女生”
B. 恰好有1名男生”與“恰好2名女生”
C. “至少1名男生”與“全是男生”
D. “至少1名男生”與“全是女生”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某租賃公司擁有汽車100輛,當每輛車的月租金為3000元時,可全部租出;當每輛車的月租金每增加50元時,未租出的車將會增加一輛,租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.
(1)當每輛車的月租金定為3600元時,能租出多少輛車?
(2)當每輛車的月租金為多少元時,租賃公司的月收益最大?最大收益為多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com