【題目】已知函數(shù)
.
(1)證明函數(shù)
在
上是減函數(shù),
上是增函數(shù);
(2)若方程
有且只有一個(gè)實(shí)數(shù)根,判斷函數(shù)
的奇偶性;
(3)在(2)的條件下探求方程
的根的個(gè)數(shù).
【答案】(1)證明詳見解析;(2)
為偶函數(shù);(3)
時(shí)
只有一解,
時(shí)
有兩解.
【解析】
試題分析:(1)函數(shù)
,利用函數(shù)單調(diào)性定義進(jìn)行證明,設(shè)
的
上任意兩個(gè)不等的實(shí)數(shù),且
,則
,![]()
,由于
,所以
,則
,所以函數(shù)
在區(qū)間
上單調(diào)遞減,同理可證在區(qū)間
單調(diào)遞增;(2)方程
等價(jià)于方程
有且只有一個(gè)實(shí)數(shù)根,則
,因?yàn)?/span>
,所以
,則此時(shí)函數(shù)
,
,易證明函數(shù)
為奇函數(shù);(3)在(2)的條件下,
即
,根據(jù)第(2)證明所得的單調(diào)性可知,當(dāng)
即
時(shí)
只有一解 ,當(dāng)
即
時(shí)
有兩解.
試題解析:(1)由題意:
任取
且使![]()
![]()
![]()
![]()
![]()
則![]()
在
上是減函數(shù)
同理可證
在
上是增函數(shù)
(2)由題意知方程
有且只有一個(gè)實(shí)數(shù)根
又![]()
此時(shí)
,![]()
又
的定義域?yàn)?/span>
關(guān)于原點(diǎn)對(duì)稱,
且
,
是奇函數(shù)
(3)由(2)知
可化為
又由(1)(2)知:
當(dāng)
即
時(shí)
只有一解
當(dāng)
即
時(shí)
有兩解
綜上,當(dāng)
時(shí)
只有一解;
當(dāng)
時(shí)
有兩解;
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的一個(gè)焦點(diǎn)為
,且該橢圓過定點(diǎn)
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)
,過點(diǎn)
作直線
與橢圓
交于
兩點(diǎn),且
,以
為鄰邊作平行四邊形
,求對(duì)角線
長(zhǎng)度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位共有10名員工,他們某年的收入如下表:
員工編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年薪(萬元) | 3 | 3.5 | 4 | 5 | 5.5 | 6.5 | 7 | 7.5 | 8 | 50 |
(1)從該單位中任取2人,此2人中年薪收入高于5萬的人數(shù)記為
,求
的分布列和期望;
(2)已知員工年薪收入
與工作所限
成正相關(guān)關(guān)系,某員工工作第一年至第四年的年薪如下表:
工作年限 | 1 | 2 | 3 | 4 |
年薪(萬元) | 3.0 | 4.2 | 5.6 | 7.2 |
預(yù)測(cè)該員工第五年的年薪為多少?
附:線性回歸方程
中系數(shù)計(jì)算公式和參考數(shù)據(jù)分別為:
,
,其中
為樣本均值,
,
,(
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC所在平面外一點(diǎn)P到△ABC三頂點(diǎn)的距離都相等,則點(diǎn)P在平面ABC內(nèi)的射影是△ABC的 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體ABCD-A1B1C1D1中,點(diǎn)P在側(cè)面BCC1B1及其邊界上運(yùn)動(dòng),并且總是保持AP⊥BD1 , 則動(dòng)點(diǎn)P的軌跡是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級(jí)有50名學(xué)生,現(xiàn)要采取系統(tǒng)抽樣的方法在這50名學(xué)生中抽出10名學(xué)生,將這50名學(xué)生隨機(jī)編為1~50號(hào),并進(jìn)行分組,第一組1~5號(hào),第二組6~10號(hào),…,第十組46~50號(hào).若在第三組中抽得號(hào)碼為12的學(xué)生,則在第九組中抽得號(hào)碼為_____的學(xué)生.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a1,d為實(shí)數(shù),首項(xiàng)為a1,公差為d的等差數(shù)列{an}的前n項(xiàng)和為Sn,滿足S5S6+15=0.
(1)若S5=5,求S6及a1;
(2)求d的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)
滿足:
,則稱
為“
函數(shù)”.
(1)試判斷
是否為“
函數(shù)”,并說明理由;
(2)若
為“
函數(shù)”且
,
(ⅰ)求證:
的零點(diǎn)在
上;
(ii)求證:對(duì)任意
,存在
,使
在
上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線l交拋物線y2=2x于A、B兩點(diǎn),且OA⊥OB,則直線l過定點(diǎn)( )
A. (1,0) B. (2,0) C. (3,0) D. (4,0)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com